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PREFACE

This book was originally written as an informal mimeographed text for

one of the so-called " Out-of-Hour " courses at Bell Telephone Labora-

tories. The bulk of the material was prepared in 1938 and 1939 and was
given in course form to my colleagues there in the winters of 1939—40

and 1940-41. During the war, however, the text has also been supplied

as a reference work to a considerable number of other laboratories en-

gaged in war research. The demand for the text on this basis was un-

expectedly heavy and quickly exhausted the original supply of mimeo-
graphed copies. It has consequently been decided to make the text

more widely available through regular channels of publication.

In revising the material for publication, the original theoretical dis-

cussion has been supplemented by footnote references to other books and
papers appearing both before and after the text was first written. In

addition, an effort has been made to simplify the theoretical treatment

in Chapter IV, and minor editorial changes have been made at a number
of points elsewhere. Otherwise, however, the text is as it was originally

written.

The book was first planned as a text exclusively on the design of feed-

back amplifiers. It shortly became apparent, however, that an extensive

preliminary development of electrical network theory would be necessary

before the feedback problem could be discussed satisfactorily. With the

addition of other logically related chapters, this has made the book pri-

marily a treatise on general network theory. The feedback problem is

still conspicuous, but the book also contains material on the design of

non-feedback as well as feedback amplifiers, particularly those of wide
band type, and on miscellaneous transmission problems arising in wide

band systems generally. Much of this is material which has not hitherto

appeared in previous texts on network theory. On the other hand, trans-

mission line and filter theory, which are the primary concerns of most
earlier network texts, are omitted.

Two further explanatory remarks may be helpful in understanding the

book. The first is the fact that, although the feedback amplifiers en-

visaged in most of the discussion are of the conventional single loop,

absolutely stable type, the original plan for the text called for two final

chapters on design methods appropriate for multiple loop and condition-

ally stable circuits. Invincible fatigue set in before these chapters could

iii



IV PREFACE

be written. In anticipation of these chapters, however, the preliminary

analysis in the early portions of the book was carried forward in more

general terms than would otherwise have been necessary. In Chapters

IV-VI, particularly, this appreciably complicates the discussion, and the

reader interested only in conventional feedback amplifiers can afford to

omit the more difficult portions of these chapters.

The second general remark concerns the apparently unnecessary re-

finement to which the design methods described in the book are sometimes

carried. This is explained by the fact that the amplifiers of particular

interest to the class for which the notes were originally prepared were

those used as repeaters in long distance telephone systems. Since a long

system may include many repeater points, the cumulative effect of even

quite small imperfections in individual amplifiers may be serious. Thus,

the amplifier design requires more care than might be justified in an ordi-

nary engineering application.

Under the circumstances in which the text was originally prepared, it

naturally benefited by suggestions from many sources. I am indebted

for such help to too many of my colleagues to enumerate individually.

Special mention should, however, be made of Mrs. S. P. Mead for her

assistance in the final preparation of the material for publication. It is

a particular pleasure also to express my thanks to Dr. Thornton C. Fry,

without whose support and encouragement the book could scarcely have

been written.

H. W. Bode
Bell Telephone Laboratories, Inc.

New York City

April 194S
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CHAPTER I

Mesh and Nodal Equations for an Active Circuit

1.1 Introduction

The networks to be considered consist of ordinary lumped inductances,

resistances, and capacities, together with vacuum tubes. The accessible

terminals of the vacuum tubes will be taken as the grid, plate, and cathode.

Auxiliary electrodes, such as a suppressor or screen grid, are thus ignored,

and the analysis assumes, in effect, that they are grounded to the cathode

at signal frequencies. For purposes of discussion the tubes will be replaced

by equivalent structures consisting of ordinary circuit elements connected

between the accessible terminals, together with a source of current or volt-

age to represent the amplification of the tube. This ignores such effects

as transit time and distributed inductance in the wires inside the

tube envelope, which may appear in physical tubes at sufficiently high

frequencies.

It will be assumed throughout that all the elements are linear. This

chapter is intended principally as a recapitulation of the conventional

theory for networks including vacuum tubes in a form which can be used

as a foundation for the chapters to follow.*

1.2. Branch Equationsfor a Passive Circuit

It is simplest to begin by ignoring the active elements in the circuit. The
network can then be regarded as an arrangement of individual branches,

which may include any combination of the elements R, C, and L in series,

connected together at various junctions or nodes. An example is shown by
Fig. 1.1. The circuit contains six branches, as indicated by the subscripts

a •/, and four nodes represented by the points A • • • D. Generators to

furnish the driving forces on the circuit are shown in three of the branches.

* A good general reference to the mesh analysis of passive networks is Guillemin
" Communication Networks," Vol. I. See also Shea " Transmission Networks and
Wave Filters " for a brief discussion emphasizing the stock theorems, such as the

superposition theorem, reciprocity theorem, and Thevenin's theorem, which follow

readily from the mesh analysis. The theorem on the use of an equivalent plate

generator to represent the amplification of a vacuum tube, on which the extension

of the mesh analysis to active circuits depends, is described in most books on radio

engineering. See, e.g., Terman " Radio Engineering " or " Radio Engineer's Hand-
book," or Everitt " Communication Engineering."

1



NETWORK ANALYSIS Chap. 1

The condensers are specified in units of stiffness, or reciprocal capacity,

D = 1/C, in order to simplify later equations. Each branch has been

shown as including all three types of elements but in an actual network
many of the elements might, of course, be omitted.

Fundamental expressions for the analysis of such a network can be set

up by equating the instantaneous voltage drops in each branch of the net-

work to the voltage applied to that branch. For example, if /„ represents

r> n

-vJUULr-

*>i Rd
-A/WVSA-

< A

kjUUUH \WV<I)—r-^USU-\ (—AAA—

'

D
b

R
b

De R,

hU 7/i

Re

Ec

D

Fig. 1.1

Lf

D

V

the instantaneous current in the first branch of Fig. 1.1, the voltages across

the individual elements of that branch are RaIa , pLaIa , and (l/p)DaIa,

where/) and \/p represent respectively differentiation and integration with

respect to time. The sum of the voltage drops through these three ele-

ments must be equal to the voltage of the generator Ea plus the difference

between the voltages at the nodes A and D at which the branch terminates.

If we let EA and £# represent the node voltages, we therefore have

(pLa + Ra + -Da) Ia = Ea + ED - EA . (1-1)

There will be one equation similar to (1-1) for each branch of the net-

work, or B equations in all if B represents the number of branches. In

addition to these equations, however, further equations follow from the

fact that, since no electrical charge can accumulate at any node, the sum of

the instantaneous currents leaving each node must be equal to the sum of the

currents entering it. In Fig. 1.1, for example, this leads to the condition

Ia = lb + Id- There is one such equation for each node. One of the



MESH AND NODAL EQUATIONS 3

equations, however, is superfluous, since if the law of conservation of

charge is satisfied at all but one of the nodes, it will automatically be satis-

fied at the last one also.* If the number of nodes is represented by N,

there will then beN — 1 current equations. The original branch equations

included, in addition to the branch currents, the N nodal voltages. One
of these voltages, however, can be chosen arbitrarily, since the branch

equations involve only voltage differences. There are thus B + N — 1

unknowns to be determined, and the N — 1 current equations together

with the original B branch equations are just sufficient to permit a solution.

The N — 1 conditions at the nodes allow us to express N — 1 of the

branch currents in terms of the others so that a corresponding number of

the branch voltage equations similar to (1-1) can be eliminated. This

reduction becomes particularly easy if we follow the familiar device of

regarding the remaining branch currents as flowing through complete closed

loops in the network. The assumption of closed loops or meshes has two

. advantages. In the first place it evidently leads to automatic satisfaction

of the condition of conservation of charge at each node, since in each mesh
as much current flows away from any node as flows into it. In the second

place, it eliminates the differences in node voltages which appeared in the

original branch equations, since the sum of all such voltage differences

around a complete loop must be zero. We may also notice that, since there

were originally B branch currents andN — 1 of them have been eliminated,

the number of remaining currents or meshes is given by the

Theorem: In any conductively united network the number of inde-

pendent closed meshes or loops is one greater than the

difference between the number of branches and the number
of nodes.

An illustration of the reduction from branch to mesh currents is fur-

nished by Fig. 1.2, which shows a choice of mesh currents which is appropri-

ate for the circuit of Fig. 1.1. The independent branch currents in terms

ofwhich the other currents are expressed are those flowing through branches

a, d, and/, each of which is included in only one mesh. There are three

meshes since the circuit contains six branches and four nodes.

It is apparent that in general the meshes can be chosen in a variety of

ways. Thus in Fig. 1.2 the independent branch currents might be chosen

as those flowing through, for example, a, d, and e, or a, b, and c. These

* This analysis neglects mutual inductance couplings as a matter of simplicity.

If the network consists of a number of isolated fragments connected only by mutual

inductance, there is evidently one superfluous condition of this sort for each con-

ductively separate fragment of the network.
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Fig. 1.2

possibilities are useful since they allow us

to assign branches in which we may have

particular interest, such as the generator or

receiver impedances, to individual meshes.

In a given physical circuit such assignments

cannot be made with unlimited freedom. In

Figs. 1.1 and 1.2, for example, it is not pos-

sible to assign branches a, b, and d to three

separate meshes because the corresponding

branch currents are related by the condition

at node A and are not independent variables. For purposes of future an-

alysis, however, it will be assumed that there are no restrictions on the

choice of meshes, since an adequate mesh system can always be obtained

by the addition of ideal transformers or other elements of vanishing

physical importance.

1.3. Mesh Equationsfor a Passive Circuit

It is evident that each mesh equation can be obtained by adding together

the branch voltage equations around the complete loop and at the same
time eliminating the superfluous branch currents by means of the nodal

current conditions. Since this introduces only linear combinations of the

coefficients in the original branch equations, the resulting system of equa-

tions must be in the general form

Z\\I\ + Z12/2 + • • • + Zi nIn = Ei

Z21/1 + Z22/2 + • • • + Z^rJn — E2

Zn\I\ + Zn2l2 + • • • + ZnnIn — En

where the Z's in the left-hand side are of the form

Z\j — pL,ij -\- Rn + Dij

(1-2)

and p still represents d/dt.

The mesh currents are indicated by numbered subscripts to distinguish

them from the branch currents. The coefficients Zu, Z22 , etc., will be

called the self-impedances of the various meshes and the coefficients Z12 ,

Z13, Z23 , etc., the mutual ox coupling impedances between meshes.

The mesh equations are expressions of voltage equilibrium. They express,

in other words, the fact that the sum of the driving voltages around
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a closed loop must be equal to the sum of the voltage drops in the

loop. This makes it easy to evaluate the E's and Z's in the equations.

In the first mesh equation, for example, let it be supposed that we set

I2 = I3 = • • • = In = 0. This can be done without disturbing the

first mesh by inserting sufficiently high impedances in each of the other

meshes. The first mesh equation then reduces to

(pLu + Rn +- Dn) Ix
= Ex . (1-3)

Since there are no other currents flowing in the structure, the left-hand

side of this expression evidently represents the voltage drop due to the

flow of the current I\ through all of the elements in the first mesh. The
coefficients Ln, Rn, and Du thus represent respectively the sum of the

inductances, resistances and stiffnesses in the first mesh. Correspondingly,

Ei on the right-hand side represents the sum of the generator voltages in

this mesh. Now, if we allow I2 to flow, an additional voltage drop Z12/2

appears in the first mesh. This must evidently be due to the flow of I2
through the elements which are shared by the first and second meshes.

Similarly, Z13 represents the elements which are common to the first and

third mesh, etc.

The coefficients in the equations for the other meshes can be determined

in analogous fashion. In the purely passive circuits now under considera-

tion, the coefficients representing a coupling between two meshes must be

the same in each mesh equation. In other words, Z,-y in the ith equation

must be the same as Zji in the^'th equation, since either quantity merely

represents the elements which are common to the two meshes.

The determination of the coefficients in the mesh equations can be illus-

trated by reference to the structure of Figs. 1.1 and 1.2. The self-impedance

Zn of the first mesh is equal to the sum of the impedances around that

mesh. We thus have Ln = La + Lb + Lc , Rn = Ra + Rb + Rc , and

Dn = Da + Db + Dc . Similarly, the voltage £1 is equal to the total

voltage Ea + Eb + Ec of all the generators in this mesh. The impedances

Z12 and Z13 represent the elements which the first mesh shares respectively

with the second and third. As Fig. 1.1 is drawn, however, the positive

direction of the first mesh current opposes that of the second and third

mesh currents in each common branch. The coupling elements must there-

fore be taken negatively to account for the fact that the voltage drops across

them due to the flow of the second and third mesh currents are opposite to

those produced by the flow of the first mesh current. We thus have
L12 = —Lb, R12 = — Rb, etc. The terms appearing in the other mesh
equations can be determined in a similar fashion.



NETWORK ANALYSIS Chap. 1

1.4. Mesh Equationsfor an Active Circuit

To generalize equation (1-2) to fit a circuit containing vacuum tubes,

we may suppose that only one of the E's on the right-hand side of (1-2)

is an actual driving voltage and that the remaining E's are apparent plate

generators representing the amplifications of the tubes. For example, in

one particular tube, let us suppose that theyth mesh current flows from

grid to cathode and the £th mesh current from cathode to plate as shown by

Fig. 1.3 Fig. 1.4

Fig. 1.3. Following the usual assumptions, the amplification of the tube

can then be represented by inserting an equivalent generator — pe in series

with the plate impedance Ro, where e is the grid voltage, as shown by

Fig. 1.4. The passive impedances of the tube can be incorporated as part

of the passive circuit and play no part in this analysis.

Since e = ZgIj in Fig. 1.4, the equivalent plate generator voltage can

also be written as —nZgIj. The &th of equations (1-2) can therefore be

written as

or

Zfcl/l + • • + Zkjlj + • • • + Zknln = —ftZglj

Zkih + • • + (Zkj + pZg)Ij + • • • + ZknIn = (1-4)

where Zkj is the passive coupling between the two meshes. It is obvious

that the equation is still in the same form as the original £th equation of

(1-2) provided we redefine Z^j to include the added quantity fj.Zg . This is

the familiar result that the amplifications of the tubes can be represented

by modifications in the various coupling terms in the mesh equations. So

far as the general form of the equations goes, the only distinction between

active and passive structures is the fact that we can no longer assume in

general that the principle of reciprocity holds. In other words, we can no

longer assume that Zt-y
= Zy,. The quantity fiZg will be called the mutual

impedance or transimpedance of the tube, after the analogy with trans-

conductance in the following discussion.

In order to prevent future confusion with signs, it is important to notice

here the convention adopted in Fig. 1.3 for the positive direction of grid
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and plate currents. It has been so chosen that the transimpedances in the

left sides of the mesh equations will be positive when the m's are positive, as

they are in normal tubes, and also so that a uniform convention of sign can

be adopted for a number of tubes in tandem coupled by ordinary interstage

networks. With this choice, however, the equivalent plate generator volt-

age is negative, so that successive tubes in an amplifying circuit give suc-

cessive phase reversals, in addition

to any phase shifts which may be

ascribed to the purely passive ele-

ments of the circuit. Similar re-

marks apply to the nodal analysis

given later.

As an example of the processes in-

dicated by (1-4) we may consider the

mesh equations for the circuit of

Fig. 1.5. The structure represents

broadly one stage of an amplifier with grid plate coupling. The coupling is

indicated by the impedance Z4 and the preceding and following interstages

by the impedances Z\ and Z5 . Z2 is the grid cathode capacity of the tube

and Z3 represents its plate impedance.

The circuit has three meshes. They are chosen in the form shown by
Fig. 1.5 in order to assign the generator impedance, the grid impedance
and the plate impedance each to only one mesh. If we assume for the

moment that the tube has no amplification the mesh equations are readily

set up in the form

Fig. 1.5

(Zj + Z4 + Z5 )/i - (Z4 + Z5)/2 + Z5/3 = E

(Z4 + z5)A + (z2 + z4 + z5)/2 - Z5/3 =

Z5A - Z5/2 + (Z3 + Z5)/3 = 0.

(1-5)

Since the voltage across the grid is +7 2Z2 when the currents are taken in

the directions shown in Fig. 1.5, the equivalent generator in the plate circuit

is ~/xZ2l2- This appears as an effective voltage in the third mesh equation.

When this term is transposed to the left side of the equation in the manner
described previously, the third equation thus becomes

Z5A + (mZ2 - Z5)/2 + (Z3 + Z5)/3 = (1-6)

the other mesh equations remaining unaffected.

1.5. Steady State Solution for the Mesh Equations

As the mesh equations have been developed thus far, they have always
represented differential equations for the circuit. Thus, for example, in
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(1-2) the E's and I's represent instantaneous values of voltages and
currents and p represents differentiation with respect to time. In order to

find the response of the circuit when one of the E's is a voltage varying
sinusoidally with time, therefore, we should, strictly speaking, substitute

sin cot or cos oit for the appropriate E and attempt to find expressions for the

I's as sums of sine and cosine terms in a form which would satisfy the set

of differential equations.

In accordance with the usual practice, this procedure can be much simpli-

fied if we represent a physical sinusoid by the exponential e
iat.* The

currents and voltages in the system are then written in the form Ije
iai and

Ejetat , where the I's and E's are now merely constants instead of being

quantities varying with time as they were in (1-2). The advantage of this

substitution results from the fact that differentiating or integrating e
iut

with respect to time merely multiplies or divides the exponential by iu>.

Thus, any quantities of the form pelat or (\/p)e
iat which result when the

currents Ielat are substituted for the original currents in (1-2) become
simply i<j>e

lat and {\/i(j)e
lat when the differentiation and integration

symbolized by p and \/p are carried out. Each p on the left-hand side of

(1-2) is then replaced by iu. The time factors e
%at

in the current and volt-

age expressions are unchanged, and can be divided out of the final equations.

1.6. Driving Point and Transfer Impedance

It follows from the considerations just advanced that the differential

equations (1-2) can also be regarded as a solution for the steady state

response of the network to sinusoidal voltages of frequency oj/2x provided

p is replaced by ioj and that we regard the I's and E's as representing merely

the constant coefficients in the general current and voltage expressions

Ie
lat and Eelat

. With this understanding, the determination of any

particular current flowing in response to a particular voltage is equivalent

to the solution of a set of ordinary linear equations. As an example, the

current I\e%a% in the first mesh flowing in response to the voltage Eielat

also in that mesh is given by

Iie
iat = ^ii

Eig
iot

(1
_7)

where A is the determinant of the coefficients in the left-hand side of (1-2)

and An is the determinant obtained when the first row and the first column

of A are omitted.

The driving point impedance Z in the first mesh is by definition the ratio

* A discussion of the physical meaning of this substitution is avoided here, since

the subject is taken up again in the next chapter.
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of the voltage to the current in equation (1-7). It is given in other words

by

Ei A
Z = y = — • (1-8)

In a similar fashion the equations can be solved to determine the current

in any other mesh in response to this same voltage. For example, the

current in the second mesh is given by

I2e™< = h* Ex e
ia"

(1-9)

where Ai 2 is the determinant of the coefficients in the left-hand side of

(1-2) after the elements in the first row and second column have been

omitted.*

The ratio between the voltage E\ and the current I2 will be called the

transfer impedance, Zt, from the first to the second mesh. It is given by

Ei A
Zr = 7

i=— • (1-10)

1.7. Z and Zt as Functions of a Single Element

In future discussion, we will have frequent occasion to study the depend-

ence of the driving point and transfer impedance upon a single element in

the network. Let it be supposed, for example, that we are interested in the

variation of Z with respect to a bilateral impedance z in the jth. mesh.f

This can be investigated by examining the way in which z enters the deter-

minants A and An of (1-8).

In general, any determinant can be regarded as the sum, with appropriate

signs, of all possible products formed by multiplying together elements of

the determinant, when each product includes just one element from each

row and column of the determinant. Since z is in the_/th row and column
of A, it must therefore be multiplied by all possible products of elements

taken from every row and column of A except the jth. These, however,

evidently form the minor Ayy of the original determinant. Similarly, in

* Strictly speaking, the symbols An, A12, etc., represent cofactors here. In

other words, they are the determinants as defined in the text multiplied by +1 or

— 1 in accordance with the usual rules of determinant theory. In particular, A12

is negative. This may be ignored for theoretical analysis, however, since it is only

necessary to treat the symbols as cofactors consistently.

fit is assumed here, in other words, that 2 is found in the^'th mesh and in none of

the others so that it i§ a constituent of only the self-impedance Z,-,- in (1-2).
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forming Au the terms by which z is multiplied must be the minor AUyy
obtained by omitting both the first and jth rows and columns. If we let

A and An represent, respectively, A and An when z = 0, therefore, we
have

Z ~ A° -I- rA
" (1_11)

Since A,-,- and Anjj are evidently independent of z they can equally well

be written as A# and Au#. This will occasionally be done in later analysis

in order to facilitate further transformations.

The relation between Zr and z can be found in similar fashion. It is

given by

A + zA,-,-

Zr =
A° +,A •

(1
"12)

If z represents a unilateral coupling term, instead of a bilateral element,
the expansion is essentially the same. Thus, if we suppose that z is a part of

Zij in the original determinant, we readily find

A + zAw2 = Ao I* d-13)An + zAiiy

and

A° + zA -

Lt = To—; ' (1-14)
A?2 + zAiaii

V J

1.8. Nodal Equationsfor a Passive Circuit*

In the mesh equation formulation, the driving sources are regarded as

voltages. The dependent variables, whose determination constitutes the

solution of the structure, are the currents in the several closed loops or

meshes. There is one equation for each mesh and each equation represents

the fact that it is physically necessary for all the meshes to be in voltage

equilibrium.

As we might expect, it is also possible to set up a system of equations in

reciprocal form with the activating forces taken as currents and their

responses as voltages. In this case, the nodes replace the closed loops in

the mesh equation analysis. Figure 1.6 shows the form which such an

analysis may take. The driving sources are the currents I\- • In
impressed on the nodes 1 • • • n from some outside sources. The responses

are the voltages E\ • • En for the individual nodes. Each voltage is sup-

* The writer is indebted to Prof. R. M. Foster, of the Polytechnic Institute of

Brooklyn, for pointing out the superiority of the nodal analysis.
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posed to be measured with reference to some particular node which is

chosen as ground.

The fundamental equations in the nodal system are expressions of current

equilibrium. They represent, in other words, the fact that the driving

current flowing into any node from the outside must be equal to the total

current flowing away from that node into the rest of the network, just as

Fig. 1.6

the mesh equations represent an equilibrium between driving voltages and

voltage drops in any mesh. In Fig. 1.6, for example, the current flowing

into the first node from the outside is I\. The current flowing from that

node direcdy to ground must be Y\E\. The current flowing from that

node to the second node must be Y\2 {E\ ~ E2 ), etc. The complete equa-

tion is therefore

Y1E1 + i^CEx - E2 ) + + YmiEi - En ) = h (1-15)

which can evidently be written as

where

Yn = Yt + y12 + Yi3 + • • • + Yln .

YlnEn = h (1-16)

(1-17)

In equation (1-17) Yu is obviously the total admittance between the

first node and all the others when the others are shorted together. It will

be called the self-admittance of the node and is evidently analogous to the

self-impedance of a mesh, which can be defined as the impedance of the

mesh when all other meshes are opened. Similarly, the terms YX j are

mutual admittances corresponding to the mutual impedances appearing in a

set of mesh equations.

Since an equation analogous to (1-16) can be written for each node, the
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complete system of equations becomes

Y11E1 - Y12E2 YlnEn = Ij,

-YaiEj. + Y22E2 Y2nEn = /„

(1-18)

-Y„i£i - Yn2E2 + YnnEn = In .

It is not necessary to write a separate equation for the last or " ground "

node. Since as much current must leave the network as a whole as enters
it, the condition of current continuity will automatically be satisfied for
this node if it is satisfied for each of the others. We thus have the

Theorem: In any conductively united network the number of inde-
pendent nodal equations is one less than the total number
of nodes.

At first sight, it might appear that the cases in which we can regard the
energizing sources as constant current generators or, in other words, as
generators with infinite internal impedances would be rather rare. In the
mesh equation analysis, however, we seldom deal with generators having
zero internal impedance and it is customary to allow for this by adding the

-oi

E
l
Z

o

Infinite
i-

-o /

Impedance Source

—oj

Fig. 1.7

Wo
Fig. 1.8

internal impedance of the generator to the impedance of the mesh in which
it appears. When consideration is given to this fact the two methods stand
on an absolute parity.

To show this, let us suppose that the actual driving source is a generator
of internal emf E and internal impedance Z connected between terminals i

and./' as shown by Fig. 1.7. It is easy to see that this must be equivalent
to the circuit shown in Fig. 1.8 for any connections between i and./. In
other words, the source shown in Fig. 1.7 can be represented in the nodal
admittance analysis merely by choosing the energizing currents /,• and Ij
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as E/Z and —E/Z , respectively, and adding the admittance 1/Z across

terminals i and./.

In this discussion we are concerned with the use of current rather than

voltage sources only to establish the broad possibility of writing network

equations in the general form given by (1-18). It is interesting to note,

however, that the formal symmetry between the current and voltage

methods of analysis can also be extended to the individual terms in these

equations. This follows from the fact that the current and voltage rela-

tions for a resistance or conductance can be written as E = RI and

/ = GE, while the corresponding expressions for a capacity or inductance

are E = Lpl and / = CpE, where p may be either m or d/dt.

It is obvious from the symmetry of these expressions that we can erect

a set of nodal equations formally identical with a given set of mesh equa-

tions by interchanging R and G and L and C wherever they appear. In

other words, the general term Z;y = pLa + i?,y + Da/p in (1-2) is re-

placed by Yij = pCij + Gij + Tij/p in (1-18), where Y stands for a

reciprocal inductance, just as D represents a reciprocal capacity. The
two sets of equations will evidently be equal, term for term, provided we
SGt L*%i == ^ijy -K-ij — ^ijy ***1CI *-^ij * ij-

The recognition of these general possibilities constitutes the so-called

principle of duality in network theory.* If the mesh equations for one

network correspond, term for term, with the nodal equations for another,

the two networks are called inverse structures. It is not always possible

to obtain the exact inverse of a given structure. There are difficulties,

for example, with networks including mutual inductance coupling, since

the capacitance dual of a coupling between coils does not exist. The
inverse may also fail because the inverse set of equations does not corre-

spond to any conceivable arrangement of impedance branches. In most

of these instances, however, it is possible to obtain a network which will

behave like the desired inverse so far as external connections are con-

cerned, though it may have a different internal structure. The detailed

discussion of these possibilities is beyond the scope of this chapter. The
subject is resumed in Chapter X.

1.9. Nodal Equationsfor an Active Network

The modifications which are necessary in order to include vacuum tubes

in a nodal admittance analysis are essentially similar to those we have

already made in the mesh analysis. Suppose, for example, that the grid,

* Good general discussions are given in Guillemin " Communication Networks,"

Vol. II, and Gardner and Barnes " Transients .in Linear Systems," Vol. I. The
latter reference may also be cited for its detailed description of the method of setting

up a system of nodal equations, especially in circuits containing mutual inductance.
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plate, and cathode of a given vacuum tube are respectively nodes j, k, and m
of the complete network. The voltage between grid and cathode is then

G Em i

Ej — Em , and in accordance with our

preceding discussion the effect of the am-
plification of the tube can be represented

by introducing an equivalent generator

— fx(Ej — Em) in the plate circuit. It

follows from Figs. 1.7 and 1.8, however,

that this equivalent generator can in

turn be replaced by two current sources

of strengths —fi(Ej — Em)/R and

fi(Ej — Em)/R applied to the plate and
cathode, respectively, where Ro is the internal resistance of the tube, pro-

vided the admittance I/Rq between plate and cathode is incorporated as

part of the network.

With the application of these two current sources, the &th and trfth

nodal equations become

Fig. 1.9

— YjclEi — YU2E2 — • • • — YknEn

—Ym\Ei — YmiEi — • • • — YmnE„ —

-y.(Ej - Em )

Ro

n{Ej - Em )

Ro

(1-19)

The terms on the right-hand side can now be transposed and incorporated

as part of the mutual admittance terms appearing in the left-hand side. In

most cases, the mth or cathode node will be at ground. If we make this

assumption, which corresponds to the assumption made in connection with

Fig. 1.3, that the grid and plate circuits are in separate meshes, the second

of equations (1-19) can be ignored. The first equation then becomes

YkiEi — Yk2E2 (Yki - Gm)Ej YknE„ = (1-20)

where Gm = h/Rq and is the quantity usually described as the transcon-

ductance of the tube. As in the mesh analysis, the effect of adding vacuum
tubes is not to change the form of the equations but merely to destroy the

reciprocity condition Y%j = Yji.

As an illustration of these processes, nodal equations will be developed

for the circuit shown in Fig. 1.9. This is the same network as the one

previously shown by Fig. 1.5, redrawn to suit the nodal analysis. Since

the bottom or cathode node can be taken as ground, there are two equations.

If we suppose initially that the apparent current generator —GmEi in the
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plate circuit is zero, the equations are readily found to be

(Yi + Y2 + Y4)£x - Y4£2 = /

(1-21)

-YJSt + (Y3 + Y4 + Y5)E2 = 0.

The introduction of the plate generator is equivalent to adding —GmEi
to the right-hand side of the second of these equations. After this term is

transposed to the left-hand side, this equation becomes

- (Y4 - Gm)E1 + (Yz + Y4 + Y5)E2 = (1-22)

the first of equations (1-21) remaining unchanged.

A solution of the nodal equations to find the steady state voltages corre-

sponding to any given set of sinusoidal driving currents can evidently be

obtained by the processes already used for mesh equations. For example,

the driving point admittance Y between the first node and ground will be

defined as the ratio between the driving current entering that node and the

resulting voltage at the node. It is evidently given by

Y -it'£ ™
where the primes are used to indicate that the determinants refer to the

system of equations given by (1-18). Similarly, the transfer admittance Yt
between the first and second node will be defined as the ratio of current

applied at the first node to the resulting voltage at the second node. It

can be written as

In view of the obvious analogy between the mesh and nodal methods of

analyzing a circuit, the two methods will be used indifferently in most of the

following discussion. The primes, which were used in equations (1-23)

and (1-24) to distinguish the nodal determinants from those obtained from

the mesh equations, will ordinarily be omitted. The determinant A will

thus be used to refer to either system unless there is some particular reason

for distinguishing between them. The symbol W, which may perhaps be

called an " adpedance " or " immittance," will be used to refer to an element

in either system.

1.10. Choice between Mesh and Nodal Analysis

The above discussion has emphasized the fact that mesh and nodal

equations can be used symmetrically in a general theoretical analysis.
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The reader is cautioned, however, against concluding from this that the

choice between the two systems is a matter of indifference when one is

dealing with a definite physical circuit. In most circumstances the nodal

analysis will be found appreciably more convenient.

The advantages of the nodal analysis may be traced to several causes.

The most obvious is, of course, the fact that many circuits contain screen

grid tubes having a very high plate resistance. Since such tubes are very

nearly constant current devices, circuits containing them can evidently be

analyzed more conveniently on the nodal than on the mesh basis.

Another advantage of the nodal formulation results from the fact that

the equations can be more directly correlated with the physical structure

of the network than is possible with the mesh formulation. The nodal

equations can be written down directly, but to use the mesh analysis it is at

least necessary to begin by selecting a suitable system of closed loops. In a

complicated circuit, this may not be as easy a problem as it appears. The

difference becomes particularly conspicuous in the inverse situation, when

one has been given a set of equations and wishes to determine a correspond-

ing physical structure. It is evident that the corresponding structure can

be written down directly if we use nodal equations. If we begin with mesh

equations, on the other hand, the process may be quite difficult. In fact,

it is theoretically possible to write down a plausible looking set of " mesh

equations " for which no corresponding circuit configuration exists.

The final consideration is the fact that, although either mesh or nodal

equations can be used in analyzing any given circuit, it is not necessarily

true that the two formulations will require the same number of equations.

The preceding discussion gives the required number of equations as

B — (N — I) for the mesh system and a.s N — I for the nodal system.

In order to compare these expressions, suppose that the network is originally

very simple and is built up to its final form by the addition of one node at a

time. Obviously, each new node must be connected with the original

circuit with at least two new branches if the node is to be an operative part

of the structure. We may expect therefore that B will be at least twice as

great as N — 1, so that in general the number of mesh equations will not

be less than the number of nodal equations and may be much greater if the

circuit is complicated.* For example, it required three mesh equations

and only two nodal equations to analyze the structure shown by Figs. 1.5

* These conclusions are true only " in general " because of the possibility of simul-

taneously creating two new nodes by means of a cross-connection between them,

so that one branch serves for both. An example is furnished by a balanced ladder

line, the cross-connections being the shunt branches. These, however, are excep-

tional cases which are not representative of ordinary physical circuits.



MESH AND NODAL EQUATIONS 17

and 1.9. In general, the nodal analysis appears to be particularly adapted

to complicated high frequency circuits where we must consider many
capacities to ground. Evidently, ground capacities from any of the exist-

ing nodes will not greatly complicate the nodal equations, but they may
considerably increase the number of meshes in the circuit.
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CHAPTER II

The Complex Frequency Plane

2.1. Introduction

In actual engineering applications we are concerned with the response

of a circuit only to currents and voltages at real frequencies, that is, to

ordinary sinusoids. For purposes of analysis, however, it is often neces-

sary to give attention also to the response of the circuit to driving forces

whose frequencies are complex. This chapter will consider the physical

meaning which may be assigned to the term " complex frequency " and

some of the elementary ways in which the conception of complex frequencies

may be used in describing circuit characteristics.

2.2. The Single Resonant Circuit

It will be recalled that the general circuit equations in the last chapter

were first developed in differential form, and that integrated or " steady-

state " solutions for sinusoidal driving forces

|—UULftJU—AAAAArH I—| were obtained by supposing that the exponen-

tial e
lat could be substituted for a physical sinu-

soid. The meaning of a complex frequency can

FIG . 2.1 be understood most easily if we return for a

moment to this last step. It will be sufficient

to examine the solution for the single resonant circuit consisting of resist-

ance, inductance, and stiffness in series, as shown by Fig. 2.1.

Let the sinusoidal driving voltage be written as Eo cos cot. If q repre-

sents the charge on the condenser, so that the current / = dq/dt, the differ-

ential equation of the circuit is

J*q dq

l?
+ R

Tt

We may assume that the solution of this equation can be written i» the

general form

q = A cos wt + B sin u>t (2-2)

or

/ = — = —Aw sin oit + Boo cos cot (2-3)
dt

where A and B are constants still to be determined.

18

L=4 + R -r + Dq = Eo cos cot. (2-1)
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The substitution of the assumed form (2-2) for q in (2-1) gives

— ALea2 cos cat — BLca2 sin cat — ARca sin cat

+ BRca cos cat + AD cos cat + BD sin cat = E cos cat. (2-4)

This equation must hold for all values of /. In particular, it must hold for

values of t at which sin cat is zero and also at values of / for which cos cat

is zero. But when the sine terms are zero (2-4) becomes

-ALca2 + BRca + AD = E (2-5)

and when the cosine terms are zero it becomes

-BLca2 - ARca + BD = 0. (2-6)

These equations can be solved simultaneously for A and B. This gives

(D - Lca
2)E

(Rca)
2 + (D- Lea

2
)
2

(Rca)E

(Rca)
2 + (D - Lea

2
)
2

from which the assumed solution for q becomes

_ T CD -Lea2
) Rca . "I

1 ~ ^o I /r, v2 ,

—

IT, t av2 cos ut ~H ,„ „o ,

—77; , 9,9 sin ut
L(Ro>) + (D - Lea

2
)
2

(Rca)
2 + (D - Lea

2
)

2
J

(2-9)

A =
7^T23r77S~T77^2 (2-7)

* = ,*.,* 1 '° r.** (2-8)

or

j, r *
,

z« - d/« . I=
-^o „2 ,—rr ,, , .o cos co/ + ~

,

—

—

_^ . . , sin eat •

IR2 + (Lea - D/ea) 2 R2 + (Lea - D/ca)
2

J

(2-10)

The fact that these are correct solutions is easily established by direct sub-

stitution in equation (2-1). The coefficients in equation (2-10) are, of

course, the familiar expressions for the in-phase and quadrature components
of the total current.

2.3. Exponential Representation of Physical Sinusoids*

The expression given by (2-10) is evidently the true physical current

which would flow in response to the assumed sinusoidal driving voltage.

*The use of the exponential solution in electric circuit theory goes back at least

as far as Heaviside, " Electromagnetic Theory." For later discussions see G. A.
Campbell, " Cisoidal Oscillations," Trans. A.I.E.E., April, 1911; J. R. Carson, " Elec-

tric Circuit Theory and Operational Calculus," 1926 (Bibliography); T. C. Fry,
" Elementary Differential Equations," 1929. The last reference gives a particu-

larly complete discussion.
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The method required to derive (2-10), however, is cumbersome and labori-

ous and these objections would appear still more forcefully if we had dealt

with a multi-mesh system. The use of the exponential e
lat

to represent

the actual physical sinusoid provides a way of analyzing the circuit much
more expeditiously.

The justification for the use of e
xat

in place of a physical sinusoid depends
upon the principle of superposition. It depends, in other words, upon the

fact that in a linear system such as (2-1) the current flowing in response to

two driving forces acting together is the sum of the currents which would
flow in response to the two separately. Thus, in (2-1), if q\(t) is the

response of the network to E\ (/) so that

L
l?

+ R
lti

+ Dqi = £l(/) (2_11)

and q2 (t) is the response to E2 {t) so that

~a¥
+R

Tt
L^ + R^ + Dq2 = E2 (t) (2-12)

then

z *<a + ft) + RdM±ri + D{qi + ?2) = Ei(t) + Mt)
air at

follows obviously from simple addition of equations (2-11) and (2-12).

This principle is usually applied to find the response to E\{i) + E2 {t)

from the responses to E\{t) and E2 {i) separately. In this application,

however, the principle is made to work backward to give the responses to

Ex (t) and E2 {t) separately when the response to Ex (t) + E2 (t) is known.

Obviously, it is not always possible to do this, since the knowledge merely

of the sum q\ if) + q2 (/) does not necessarily tell us how much is q\ it) and

how much is q2 {t). The decomposition can, however, be effected without

ambiguity if Ei(t) is real while E2 (t) is a pure imaginary quantity, since it

follows from the fact that the coefficients of (2-1) are real quantities that

the corresponding qi(t) and q2 {t) must then be real and pure imaginary,

respectively. In this special case, therefore, we can work backward from

equation (2-13) to equations (2-11) and (2-12) merely by picking out the

real and imaginary components of the q which is a solution of (2-13).

In the present application, we have e
lat — cos &>/ + i sin wt. The real

and imaginary components of the q which corresponds to the driving voltage

e
iat must therefore be the ?'s which would correspond respectively to the

voltages cos cat and i sin wt. For example, let qi and iq2 be the solutions

which would correspond to the voltages jE cos cat and iE sin cat in (2-1).
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and let q — q\ + iq2- We then have

A'tt) + R

dt

d(iq2 )

L
~df

+ R
~dt

+Dqi = Eo cos "*

+ D(iq2 ) = iE sin &>/.

dt
2

' " dt

Adding (2-14) and (2-15) together gives us

L 2̂ + R^ + Dq = Eoe^ = E e*"
dr dt

21

(2-14)

(2-15)

(2-16)

where p has been written for iu. By the previous argument, the real com-

ponent of the q which satisfies this equation will be the qi which satisfies

equation (2-14). Upon assuming that q — qoe
pt we find readily

q {p
2L + pR + D)ept = Eoe".

It follows that

9o

E

p
2L + pR+ D

or

7 =
pE eP

t

p
2L + pR + D

Upon substituting ice for p in (2-19) we secure

£o(cos wt -f / sin wt)
I =

R + i

i-
L -l D

)

(2-17)

(2-18)

(2-19)

(2-20)

The real component of (2-20) should be the current flowing in response

to the voltage E cos cat. It turns out to be

AefJ = E
R cos (Jit

(»L -l D)
sin cot

R2 + (o>L --d\ R2 +(wL --d\
(2-21)

which agrees with equation (2-10). The method also gives as a by-product

the current which will flow in response to the voltage E sin at. We have

merely to take the imaginary component of (2-20), discarding the i.
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This gives

*imag = Eq
R sin wt ("L ~l D)

cos ait

R2 + Ll-1 dY R2 + L>L - i dY
(2-22)

This process can evidently be extended directly to multi-mesh circuits.

If we begin with a driving voltage Eept the solution of the circuit equations

for any one of the currents will appear in the general form Iept , and if the

real component of Eept is taken as the true physical voltage the real com-
ponent of Iept will be the physical current.

It will be convenient to summarize this discussion in a form in which it

appears as a set of definitions of the meanings we shall ascribe to the terms
" frequency " and " impedance." Thus

(1) A voltage of frequency/ will be written as E e
pt where p = 2w/.

Physically, we shall interpret such an expression by taking only its real

component. E , which was taken as a real quantity in the previous

example, may in general be complex. The use of a complex value of EQ

amounts simply to a shift in the phase of the physical voltage, as we can

readily see by taking the real component of (Eqi + iEo2 )e
pt

-

(2) We shall take as the current in any mesh the quantity which satisfies

the differential equations of the circuit with the voltage of (1) as the

driving force. It will appear in the form I e
pt where Iq is another complex

constant. The actual physical current corresponding to the actual physi-

cal voltage will be the real component of this expression. For brevity, the

constants E and Iq alone will sometimes be spoken of as " voltage " and
" current."

(3) The self- or transfer impedance, depending upon whether the current

and voltage are in the same or different meshes, will be defined as the ratio

Eq: To of the constants in the voltage and current expressions of (1) and

(2).

(4) The impedance is obtained as an algebraic quantity from the solu-

tion of the set of linear equations which result when the differential opera-

tor d/dt is replaced by p = iu in the differential equations of the circuit.

2.4. The Complex Frequency Plane

The definitions of frequency and impedance which have just been given

were developed on the assumption that the driving force would be a simple

sine wave. The frequency/ is then a real quantity and the new variable p
is a pure imaginary. Quite evidently, however, the definitions can be

extended formally to situations in which both/ and p are complex. The
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physical meaning of such an assumption is easily determined. Suppose, for

example, that we are dealing with the driving voltage E e
pt

. Let E and p
be, respectively, EQi + iEQ2 and p\ + ip2 . The voltage can then be written

as

(£01 + iEQ2)e^
+i^)t = (£ i cos& - E02 sin p2i)^

+ i(E01 sin p2t + E 2 cos pity1*. (2-23)

By the definitions just established the physical voltage is the real com-
ponent of this expression or, in other words, (£01 cos p2t — Eq2 sin p2i)e

vxt
.

It is obviously a sinusoidal oscillation with positive or negative damping
depending upon whether pi is negative or positive. The physical current

Fig. 2.2

corresponding to this voltage is obtained by dividing the complex voltage

by the impedance and taking the real component of the result. It will

evidently be a damped sinusoid with the same frequency and damping as

the driving voltage.

We will hereafter consider that frequency is in general a complex quan-
tity. It can conveniently be represented on a plane such as that shown
by Fig. 2.2. As the figure is drawn, the horizontal axis represents real

values ofp, and the vertical axis imaginary values ofp or real values of fre-

quency. Real frequencies are therefore obtained by reading up the vertical

scale. This arrangement is normally the most convenient one in theoretical



24 NETWORK ANALYSIS Chap. 2

analysis, since p is a more convenient variable than/. If we prefer, how-
ever, the diagram can be given a quarter turn in a clockwise direction, so

that real values of frequency are found on a scale reading from left to right

in the normal fashion. In this event, complex frequencies are found above

and below the real frequency axis. The other axis, corresponding to real

values of p or pure imaginary values of frequency, represents the limiting

case in which the driving voltage and responses are exponentially increasing

or decreasing without oscillation.

It will be noticed that the diagram represents negative as well as posi-

tive values of frequency. The lower half of the plane, in which negative

frequencies are found, is seldom ofmuch actual concern in network analysis.

In any physical circuit, the real component of the impedance is an even

function of frequency, and the imaginary component is an odd function.

In other words, the real component of the impedance at a negative fre-

quency is equal to its value at the corresponding positive frequency, while

the imaginary component at a negative frequency is the negative of the

imaginary component at the corresponding positive frequency. Simple

relations of symmetry, therefore, connect the upper and lower halves of

the plane.

The distinction between the right and left halves of the p plane, or the

upper and lower halves of the frequency plane, on the other hand, is of

primary importance. This arises from the fact that on one of these halves,

the driving voltage and response correspond to functions which decrease ex-

ponentially with time, while on the other half they represent exponentially

increasing functions. As our later discussion will show, there is a close

connection between the steady state response characteristics of the net-

work, and its transient characteristics. Since a network whose transients

increase as time goes on is unstable, or, in other words, non-physical, the

characteristics of physical networks in the half of the plane corresponding

to exponentially increasing functions are severely limited.

2.5. Zeros and Poles of Impedance and Admittance

The functions whose behavior on the complex plane will be of chief

interest are the driving-point and transfer impedances Z and Zt, and the

corresponding admittances Y and Yt. Each of these can be expressed in

terms of determinants whose elements are relatively simple functions of

frequency. In the mesh system, for example, the general impedance

coefficient can be written as Z# = (p
2Ln + pRy + Z),-y) lp- Since any of

the determinants A, An, Ai2 used in the definitions of Z and Zt can be

expressed as the sum of products of quantities of this type, it is clear that

they must all be polynomials in p divided by some power of p. The same

result, of course, holds for determinants taken from the nodal system.
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The individual functions, Z, Zt, Y, and Yt, are each expressible as the

ratio of two determinants, from equations (1-8), (1-10), (1-23) and

(1-24). Evidently, therefore, they must each appear, in general, as the

ratio of two polynomials, as shown by

Ampm + Am-iP™-1 + • • • + Axp + A
Bnp

n + B^p*1-1 + • + BlP + B
WW =

D ^n , p ^n-1 ^ L p „ , P ' (2
-24 )

Such an expression is called a rationalfunction of p.

In studying the behavior of such a function as (2-24) on the complex

frequency plane, it is convenient to give special attention to its zeros and

poles, which are respectively the points at which the function becomes zero

and infinite. This is easily expressed by rewriting both numerator and de-

nominator of (2-24) as a product of factors, so that the equation becomes

U7 - Am{$ ~ Pd (P- P2)'-- (P ~ Pm) ,. ...W™ " Bn(p-rt(p-pL)..-{p-pL)

'

(2"25)

Evidently pi • • pm are the zeros, and pi • • • p'„ are the poles. Ordinarily

the ^>'s and p''s will all be different, so that the zeros and poles are all of the

first order, or " simple." In special cases, however, two or more zeros or

poles maf coincide to give a multiple zero or pole. The zeros and poles

are obviously the analogues, for general networks, of the resonances and
anti-resonances which are familiar in purely reactive structures. The prin-

cipal difference is the fact that the " resonances " and "anti-resonances
"

in a general network may occur at complex frequencies.

The consideration of the zeros and poles is important for two reasons.

The first is the fact that except for the constant multiplier Am/Bn they

evidently specify (2-25) completely. Assuming, then, that W represents

a driving-point impedance or admittance, we can conclude that two

driving-point impedances or admittances having the same zeros and poles can

differ only by an ideal transformer. Similarly, ifW is a transfer impedance
or admittance, we can say that two transfer impedances or admittances

having the same zeros and poles can differ only by a constant gain or loss.

The other reason for paying particular attention to the zeros and poles

will appear more clearly in later chapters. It depends broadly upon the

fact that the location of the zeros and poles in the frequency plane furnishes

our best index in classifying networks. Thus, unless the zeros and poles

meet certain restrictions, the impedance functions which they specify can-

not be furnished by a physical network. Assuming that these restrictions

are met, further study of the zeros and poles permits the function to be

assigned to one of several general categories.
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2.6. Zeros and Poles of a Resonant Circuit Impedance

As an illustration of this discussion we may return to the resonant circuit

which was analyzed earlier in the chapter. The impedance of this circuit,

as given by (2-19), can be written as

z L (P- Pi)(p-Pz)

P
where

(2-26)

Pi
R

,
l/RY D R i/R\ 2 D ,

The quantities pi and pi are evidently the zeros of the impedance. Their
location depends upon the two quantities, R/L and D/L. If we multiply

R/L by any quantity, and D/L by the square of that quantity, however, pt

and p2 will merely be multiplied by the same quantity. It is, therefore,

sufficient to study the possible locations of p\ and p2 when R/L is varied

+c0

P plan

-a)

Fig. 2.3

while D/L is held fixed. If R/L is small compared to D/L, which corre-

sponds to a resonant circuit with small damping, the quantities under the

square root signs will be negative, and p\ and pi will therefore be conjugate

complex numbers with negative real parts. Typical locations for p\ and

pi are represented by the circles in Fig. 2.3. The cross at the origin repre-

sents the pole of impedance which is found when p = 0. It is customary to

consider that there is another pole at p = °° , since the impedance is also

infinite there.

It is easily shown that, as R/L varies, p\ and pi move along the circular

paths indicated by Fig. 2.4. At the extreme points A and A' , for which R
vanishes, p\ and pi lie on the real frequency axis. This corresponds to the

ordinary resonance of a non-dissipative resonant circuit, in which the

impedance vanishes at a real frequency. The points B and B' represent the
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zeros when the circuit contains a moderate amount of dissipation. This is

similar to the case previously illustrated by Fig. 2.3. At C, on the other

hand, (R/2L) 2 = D/L and the two *f
zeros are equal. In other words, the

impedance has a double zero at this

point. This is the critically damped ° B

case. Since C is found on the real p t

axis the corresponding physical volt- -t i c

age and current are non-oscillatory d' i d

exponentially decreasing functions. v

If R/L is still larger, pi and p2 are \ b'

found respectively to the right and

left of C on the real p axis as illus-

trated by D and D'. It will be no-

ticed that, although the zeros can be FlG
-
2 -4

assigned a great variety of positions by varying the relations among R, L,

and D, they are always found in the left half of the p plane.

2.7. Analytic Functions

The introduction of complex values of frequency is equivalent in mathe-

matical terms to studying such quantities as the driving-point and transfer

impedance by the methods of function theory. In this field, one of the

most important tools available to the mathematician is the conception of

an analytic function.

Definition: A function is said to be analytic at a given point in the

plane of the independent variable provided it has a finite

derivative, independent of direction, at that point.

The function is analytic over a given region provided it is analytic at

every point in that region. Points for which it is not analytic are called

singular points or singularities.

The restriction that the derivative be independent of direction is rela-

tively unimportant for engineering purposes. It is effective only in elimi-

nating such functions as the real component of Z, or the absolute value

of Z. For example,
|
Z

|
cannot be an analytic function of p at any point

because d\ Z
\
must be a real quantity, and the phase angle of the derivative

d\ Z \/dp must therefore change as we change the phase angle, or direction

in which dp is taken. As long as we restrict ourselves to functions which

are in general complex, such asZ or log Z, however, the fact that the deriva-

tive will be independent of direction can be taken for granted. The essen-

tial feature of the definition, then, is the fact that if the function is to be

analytic the derivative must befinite.
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The points at which the derivative of a rational function, such as (2-25),
becomes infinite are readily determined. If, for example, we let N and D
represent respectively the polynomials in the numerator and denominator
of (2-25), the ordinary rules for differentiation give

dW<T) dp dp

-dF= D<
' ™

Since N and D are ordinary polynomials, neither they nor their derivatives

can become infinite for any finite value of p. We can thus conclude that

(2-28) will become infinite only at the points at which D vanishes, or in

other words only at the poles of the original function. The singular points

of an impedance or admittancefunction are therefore its poles, and the function
will be analytic in any part of the p plane which contains no poles.

It will be seen that the analyticity of the impedance or admittance func-
tion W is not dependent upon the location of its zeros. IfW is a trans-

fer impedance or admittance, however, it is usually convenient to specify

it in terms of attenuation and phase shift. This is equivalent to dealing
with the function log W, rather than with W itself. The expression

corresponding to (2-28) for the derivative of log W is

d log Wit\ dp dp

~lp^
1=

ND ^
This is evidently infinite whenever either N or D vanishes. The singular
points* of the logarithm of an impedance or admittance are therefore the zeros

and poles of the originalfunction. Log W will be' analytic only in regions

which contain no zeros or poles of W.
The properties of analytic functions furnish the most direct method of

establishing Nyquist's criterion for stability. The first application of this

material will be made in Chapter VIII, where Nyquist's criterion is

discussed.

2.8. Physical Validity of Complex Frequencies

The conception of a complex frequency can be looked upon in several
ways. If we like, we can think of complex frequencies as having real

* The singular points are " logarithmic singularities " and not poles. For the
point po to be a pole the function must approach infinity near pa as l/(p — po)

n
,

where n is an integer. Although log W approaches infinity at the zeros and poles

of W> the approach is at a much slower rate. For example, it is shown in ordinary
calculus that, although log x = - log (1/x) approaches — co as x vanishes, it in-

creases so slowly that the limit of x log x is zero.
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physical existence. The definitions of complex frequency and impedance
have been so drawn that an analysis stated in terms of complex frequencies

can be submitted to physical verification. There is no difficulty in suppos-

ing that a generator can be constructed to give a driving voltage varying as

an exponentially increasing or decreasing sinusoid for a reasonable period of

time. By energizing a network with such a generator, the response charac-

teristics of the structure can be obtained by direct physical measurement.
The conception of complex frequency can thus be checked in the laboratory

by a direct comparison of measurement and computation.

Although this physical possibility is present, another point of view is

more illuminating. We are finally interested in the response of the network
only at real frequencies. It is only this characteristic which is specified in

ordinary design problems. Moreover, the Fourier integral analysis tells

us that if we know the responses of the network to driving voltages repre-

sented by pure sinusoids, we can find its response to any other driving

voltage. The real frequency characteristic, therefore, tells the whole
story. So far as the purely theoretical relations are concerned, we might
start with the response at real frequencies and compute the response to the

exponentially increasing and decreasing sinusoids corresponding to complex
frequencies by Fourier integral methods.

Although the complex frequency conception is thus not essential, its

introduction is of great value in facilitating the mathematical treatment of

the theory. From a purely mathematical point of view, it is simpler to

study the impedance function on the complex frequency plane than it is to

consider only real frequencies. We have already noticed an analogous
situation in the discussion of the response of the resonant circuit to a sinu-

soidal driving voltage. The addition of an imaginary component to the
voltage, although it is later discarded, makes the mathematical expressions

so much more symmetrical that the algebra is actually much simplified.

Somewhat the same advantages are obtained when we generalize the con-
ception of frequency to include complex as well as real values. In this

book we will use the idea of a complex frequency chiefly as a tool to specify

what kinds of network characteristics are physically realizable. The same
conclusions theoretically should be obtainable by the use of Fourier meth-
ods on the real frequency characteristic, but the mathematics required
with that treatment is much more difficult.

A curious and interesting qualification of this discussion of the relation

between the complex and real frequency response arises when we consider
the physical significance of a complex frequency in more detail. The
characteristics we are examining are, of course, those which correspond to

the steady state response of the network. Since we never have a network
which has been acted upon by a given voltage for an infinite length of time.
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the steady state is never realized exactly in any experimental situation.
We are accustomed to supposing, however, that a physical measurement of
the steady state response can be obtained with sufficient exactness with a
suddenly applied voltage if we delay the measurement until the transients
have had time to decay sufficiently. There is evidently no difficulty
about doing this when the driving voltage is a pure sinusoid. It is also
possible if the driving voltage lies on the right side of the p plane, since
then the steady state characteristic will emerge as an increasing exponential,
while the transient terms are dying out. If the driving voltage is suffi-

ciently far to the left of the p plane, on the other hand, the " steady state
"

response will diminish with time even more rapidly than do the transients.
Evidently for frequencies in this part of the plane no physical measurement
can be made which will lead to a response which is chiefly determined by
the steady state characteristic of the network. Since the physical response
can always be computed from the real frequency characteristic by the Four-
ier integral method, this suggests strongly that the connection between the
steady state characteristics in the extreme left of the p plane and the
characteristics at real frequencies is somewhat tenuous. It should be
possible to manipulate the characteristics at the extreme left of the p plane
with considerable freedom without affecting the characteristics at real

frequencies appreciably, if at all. These possibilities have been exploited in

some branches of network theory. A description of these methods, how-
ever, is beyond the scope of this book.



CHAPTER III

Feedback

3.1. Introduction

This and the following three chapters are devoted to a general analysis of

feedback circuits and a discussion of the meaning of feedback. The princi-

pal object of the analysis is the development of a general feedback theory

in terms of the mesh or nodal equations of the amplifier as a whole without

distinction between /i and /? circuits. This is attempted partly because the

mesh or nodal formulation is the most satisfactory one for analytical work,

and partly because without such a general foundation it is difficult to pro-

vide a satisfactory theory for the multiple loop circuits which appear with

increasing frequency in current design practice. As an introduction to this

discussion, however, the present chapter gives a summary of the familiar

theory of feedback amplifiers in terms of ii circuits and /3 circuits and also a

description of some of the commonest feedback arrangements. This part

of the discussion is given only in outline form since a general acquaintance

with feedback circuits is assumed in this book.*

3.2. Elementary Theory of Feedback Circuits

In its simplest form, a feedback amplifier can be regarded as a combina-

tion of an ordinary amplifier, or n circuit, and a passive network, or j8 cir-

cuit, by means of which a portion of the output of the /* circuit can be

Input o / ^ ^v Ex Output

Fig. 3.1

returned to its input. Such a combination is shown by Fig. 3.1. Both

the n and /3 circuits are, of course, actually four-terminal structures. The
circuits are represented by single lines in Fig. 3.1 for simplicity.

When a portion of the output voltage is returned to the input, the circuit

* See H. S. Black " Stabilized Feedback Amplifiers," B.S.T.J., or " Electrical

Engineering " for Jan. 1934, also U. S. Patent No. 2,102,671. Good textbook refer-

ences are Terman " Radio Engineer's Handbook," or " Applied Electronics " by

the Electrical Engineering Staff of M.I.T.

31
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may, in fact, break into spontaneous oscillation. In this event the circuit
is normally inoperative as an amplifier. If we suppose for the moment that
oscillations are avoided, however, the characteristics of the structure can be
obtained without difficulty. It is merely necessary to recognize the fact
that the operation of the y. and |3 circuits separately is fully defined by the
voltages appearing across their terminals, without regard to the fact that
they are parts of the feedback loop. For example, let E and ER represent,
respectively, the signal voltage applied to the input and the final voltage
delivered to the output, as is shown in Fig. 3.1, and let Ex represent any
additional voltage supplied at the input by the return of a part of the output
voltage through the circuit. Then the /j. circuit, operating as an ordi-
nary amplifier, must satisfy the equation

ER = »(E + E1 ). (3-1)

Similarly, if we let /3 represent the transmission characteristic of the P
circuit, the voltage which it supplies at the input terminals must be given
by

Ei = 0ER . (3-2)

Upon eliminating Ex between these two equations, we find

ER = M£o + rfER , (3-3)

or in other words

Without the circuit, the output voltage would be given by ER = /xE .

We therefore have the

Theorem: Feedback reduces the gain of an amplifier by the factor

1 - rf-*

The quantity /4? can be called the feedback factor.^ It evidently repre-

* All the theorems in this chapter are to be taken as approximate, in the sense

that they will be superseded by the more general propositions given in Chapters V
and VI. We may also notice that in many statements of this theorem the factor

by which the gain is reduced is written as 1 + nfi. The choice of the sign of n/3

depends upon the way in which the phase shifts of the tubes are counted. Ordinary
vacuum tubes give a phase reversal of the signal, in addition to any phase shifts

contributed by the interstage impedances. In the standard p circuit containing an

odd number of tubes, therefore, there will be one net phase reversal. If this is in-

cluded as part of fi the factor appears as 1 — ^3. If the phase reversal is counted

separately, on the other hand, the proper expression is 1 + /x/3.

f Cf. Terman, loc. cit. p. 395. The term " feedback " will be used in the follow-

ing chapters for a quantity analogous to 1 — ;w/3.
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sents the transmission around the complete loop from the input of the

amplifier back to the input again. In ordinary practice, ju/3 is very much
larger than unity. Under these circumstances, equation (3^1) is con-
veniently rewritten as

** = , = -*-! (3_5)

and since the first factor on the right-hand side of (3-5) must be substan-

tially unity in absolute value when jti/3 is large, we can conclude that the

gain of the amplifier varies approximately inversely with the transmission

through the /? circuit or, in other words, is approximately proportional to

the /3 circuit loss. The error in this conclusion due to the departure of

I

/i/3/(l — /i/3)
|
from unity will be called the ju/3 effect or the /*/3 error in

subsequent discussion.

Equation (3-5) evidently implies that the gain of the amplifier may be
much affected by slight variations in the circuit but that it is almost inde-

pendent of variations in p.. In order to show this more clearly, we may
differentiate (3-4), keeping /3 constant, to give

dER 1 dix.

ER 1 - jujS /*
K

'

In this equation, the quantities dER/ER and d^/y. evidently represent corre-

sponding changes in the amplifier gain and in the gain of the ix circuit

when both gains are expressed in logarithmic units, such as nepers or deci-

bels. We therefore have the

Theorem: The variation in the final gain characteristic in db, per db
change in the gain of the n circuit, is reduced by feedback in

the ratio (1 — ji/3) : 1.

The final property of feedback of fundamental engineering importance
is the fact that it reduces the effects of extraneous noise or non-linear dis-

tortion in the n circuit. In a broad physical sense, extraneous noise and
non-linear distortion in any element can be regarded as " variations " in

that element, and the sensitiveness of the circuit to such variations is

always correlated with its sensitiveness to normal variations in the value
of the element.* Fundamentally, therefore, this property is merely a
reflection of the theorem just established. In order to demonstrate it

independently, however, let it be supposed that a generator D is inserted

somewhere in the interior of the fi circuit as shown by Fig. 3.2. D may
represent either an extraneous noise voltage, such as would be produced, for

* This is shown generally in Chapter V.
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example, by a bad contact or by hum in the power supply, or it may be

taken to represent the voltages of the modulation products arising from

non-linear distortion in the p circuit. Let Ed represent the actual output

Input /^ w ^\rd °"+P"t

Line jT>\ ra ^SP^ Line

Fig. 3.2

voltage which appears on the line in consequence of this noise generator and

let D\ represent the additional voltage which appears between m and M2

by transmission around the jj.fi loop. Since the total voltage at this junc-

tion is Do + Di and the gain between this junction and the output line is

H2, we must have

Ed = »2 (D + Di). (3-7)

The voltage Di which is returned to the junction by transmission through

the j3 circuit and through hi is evidently given by

Di = m!3Ed . (3-8)

Upon eliminating D\ we therefore have

Ed = -^- (3-9)
1 — wS

where /i has been written for the total gain miM2- Since the noise which

would appear in the output in the absence of feedback is M2A), this result is

equivalent to the

Theorem: The noise level in the output of a feedback amplifier is

reduced by feedback in the ratio (1 — ju/3) : 1.

We cannot conclude from this that the signal-to-noise ratio is reduced by

this factor, because feedback may also change the effective signal level in

the m circuit. An accurate statement can, however, be easily obtained by

comparing the structure with a non-feedback amplifier which has the same

final gain /a/(l — m/3) and the same input and output voltages E and ER .

The comparison is made most easily if we suppose that the complete /x

circuit is broken up into m and M2 portions, as in Fig. 3.2, having respec-

tively the gains 1 — (ifi and /*/(l — rtS). Then since both /j,2 and the

comparison non-feedback amplifier have the same gain and deliver the

same output voltage Er, they will have the same signal levels throughout,

and we can conclude that feedback is fully effective in improving the signal-

to-noise ratio for any noises originating in this part of the circuit. In m,
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on the other hand, the signal level is less than it is in any portion of the

comparison amplifier and the improvement in the signal-to-noise ratio for

noises originating in this portion of the n circuit is consequently only

partial. At the input terminals of the first tube, where the signal is also

reduced by the factor 1/(1 — /i/3), feedback has no effect on the signal-to-

noise ratio. Feedback is thus a useful tool in combating troubles due to

modulation and perhaps power supply hum, in the case of tubes with

directly heated cathodes, which are characteristic of output stages. It is of

little value, however, in dealing with noises due to thermal agitation, shot

effects, etc., which may be expected to be troublesome in the input stages.

The engineering importance of feedback circuits results from the possi-

bilities they present of diminishing markedly the effects of noises or varia-

tions in gain in the /* circuit. The decrease in the external gain which

follows from the use of feedback is unfortunate and makes it necessary in

general to use a more complicated n circuit to obtain adequate final gain.

This, however, is an easy sacrifice to make to secure the improvements

which are available in other directions. As an example, we may consider

an amplifier having 40 db external gain and 40 db feedback. The fi circuit

is then required to furnish 80 db gain, so that it represents an increase of

2 to 1 over the gain which would be required of a non-feedback amplifier.

For this 2 to 1 increase in the complexity of the m circuit, however, we secure

an improvement of 100 to 1 in its effective linearity and gain stability.

3.3. Types of Feedback Circuits

The principal circuit configurations useful in feedback circuits can be

classified most easily in terms of the way in which the n and /3 circuits are

connected to each other and to the line at the ends of the amplifier. The

Input

Line

7

Ou+put
Line

f
Fig. 3.3

varieties of connections which may be made do not appear very clearly

from a single line drawing such as that of Fig. 3.1. Physically, however,

the ft circuit, the /} circuit, and the line must all be two-wire circuits. The
actual situation is therefore that shown broadly by Fig. 3.3 in which the

three circuits are connected together by means of a six-terminal network.

The classification of feedback circuits thus depends upon the forms which
these six-terminal connecting networks assume.
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There may, of course, be an unlimited variety of six-terminal arrange-

ments to select from. The simplest ones, and the ones which appear to be

most useful are, however, shown by Figs. 3.4 to 3.8. In each structure, the

terminals are labeled in accordance with the notation used in Fig. 3.3.

Figure 3.4, for example, shows a series type of feedback circuit. The n
circuit is taken as a conventional three-stage amplifier, the interstage imped-

Fig. 3.4

ances being indicated by /j and 1%. The circuit is represented for con-

creteness as the 7r of branches A, B, and C, but it may, of course, reduce to a

single branch or it may assume a still more elaborate form. The effective

line terminals e-f and e'-f are indicated at the high sides of the trans-

d' f
Fig. 3.5

formers since the line and transformer characteristics evidently add di-

rectly.* The characteristic feature of this amplifier is the fact that the m
and /3 circuits, as seen from the line, are in series at each end of the amplifier.

Figure 3.5 shows a shunt type feedback system. The circuit is here

represented as a T, but, as in Fig. 3.4, it may in general be taken as any

* It is also possible to feed back on the low sides of the transformers. In this

case the transformers become part of the n circuit.
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four-terminal structure.* The characteristic feature of this type of feed-

back is the fact that the ft circuit, /3 circuit, and line are all in parallel at

each end of the amplifier.

Series and shunt feedback circuits are the simplest and probably the most
convenient arrangements for most applications. In ordinary circumstances

they are also the circuits which give a maximum amount of feedback.

They suffer, however, from two major disadvantages. The first, which is

ffi^ffi

Fig. 3.6

discussed in more detail in Chapter V, is the fact that in these circuits

feedback changes the impedance of the amplifier as seen from the line to

either a very high or a very low value. They are thus not convenient

arrangements to use with amplifiers which must have a good reflection

coefficient against the line. The second is the fact that the line impedances
form a part of the ju/3 loop. Variations in the line impedance may therefore

affect the nfi characteristic and in some cases the effect may be great enough
to cause instability.

These difficulties are overcome by the use of a bridge type feedback
circuit, such as that shown by Fig. 3.6. This circuit includes three new
branches, represented by Z2 , Z3 , and Z4 in Fig. 3.6, at each end of the
amplifier. A fourth branch, which is represented by Zu is also included to

permit control of the input and output impedances of the n circuit if neces-

sary.! The three new branches, together with the impedances of the

jj. circuit, the /? circuit, and the line, give a network having a total of six

* It should be noticed, however, that if the /3 circuit in Fig. 3.4 were chosen as

a T, or that in Fig. 3.5 as a ?r, the extreme branches could in either case be assimilated

as part of the line impedances. Since the insertion of unnecessary impedances in

the line is likely to waste power, it is clear that these are unacceptable configura-

tions unless the contributions of the extreme branches are so small as to be almost
meaningless. The configurations actually shown in Figs. 3.4 and 3.S are thus repre-

sentative of those which would be appropriate in practical cases. These considera-
tions are discussed in more detail in subsequent chapters.

f See the discussion of the effect of omitting Z] given later in Chapter V.
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branches. If any one of the six is taken as a generator impedance, the remain-

ing five can be arranged as the four arms of a bridge plus a galvanometer

arm. For example, if the generator impedance is taken as the line, the

galvanometer arm becomes the £ circuit impedance. When the bridge is

balanced in this arrangement the n(3 loop is independent of the line imped-

ance. The conjugacy between the line and the fi circuit also destroys the

effect of feedback on the amplifier impedance so that it becomes compara-

Fig. 3.7

tively easy to secure a moderate impedance which can be adjusted to match

a given line by controlling the elements in the bridge.

The bridge type circuit suffers from the general disadvantages that it

may require extreme impedance levels and that a portion of the output

power may be consumed by the branches added to secure a bridge balance.

These difficulties can be ameliorated by replacing the bridge by a three-

Fig. 3.8

winding transformer or hybrid coil. In view of the several known equiva-

lences between a bridge and a three-winding transformer, there are several

ways in which this substitution may be effected. Figure 3.7, for example,

shows a " high-side " hybrid coil feedback. In this case Zn represents the

" balancing " impedance. Figure 3.8 shows a " low-side " feedback.

In the preceding figures, the same circuit connections have been shown

at each end of the amplifier a§ a matter of simplicity. The number of

available configurations, however, is much increased by the possibility of
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combining different connections at input and output. For example,

Fig. 3.9 shows a series connection at the input terminals in combination

a' d' e'

Fig. 3.9

FlG. 3.10

with a shunt connection at the output. Figure 3.10 shows a combination

of series input and hybrid coil output.

3.4. Cathode Feedback Circuits

In addition to these general arrangements, a wide variety of other feed^

back circuits may be used in practice. A particularly important example,

for practical purposes, is furnished by the so-called " cathode " feedbacks.

These may exist in two forms, depending upon the number of stages in the

ft circuit. In either case, the arrange-

ment is essentially a modification of a

series feedback amplifier. Figure

2.WA, for example, shows a series

feedback for two stages in compari-

son with the corresponding cathode

feedback shown by Fig. 3.115. The
8 circuit is represented by the single

branch Zp. In this instance, the

cathode connection is used to secure

a phase reversal. As the discussion in

Chapter I pointed out, the successive
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tubes in the n circuit produce successive phase reversals. With an odd
number of tubes it turns out that the net resulting phase is of a sign suitable

for feedback without instability. If there are an even number of stages as

shown by Fig. 3.MA, however, the current delivered by the n circuit has

the wrong sign for direct return to the input. This is avoided in Fig. 3.1 15

by crossing the terminals in the f5 circuit to secure an additional phase

reversal. The circuit is called a " cathode " feedback because the cathode

of the first tube is off ground.*

Fig. 3.12

The use of a cathode feedback circuit to replace a corresponding series

feedback circuit when the ix circuit contains an odd number of stages is

shown by Fig. 3.12. Here the cathode feedback is introduced principally

to minimize distributed capacities to ground. As Fig. 3.12/f shows, the

conventional series feedback circuit is grounded at the cathode junction,

Pi. The junction P2 , to which the transformers are connected, is off

ground and their capacities to ground fall effectively across the p circuit.

No improvement is obtained by transferring the ground terminal from Pi

to P2 because this leaves the ground capacity of the /j. circuit, which is at

least equally large, to be accounted for. The total capacity can, however,

be minimized by grounding most of the forward circuit in the manner

shown by Fig. 3.125. Since the cathodes of both input and output tubes

are off ground there is no net phase reversal.

A special feature of the cathode circuits is the fact that some feedback

may exist for the tubes whose cathodes are off ground even when the

remaining tubes are dead. Thus in Fig. 3.115 the plate current for the

*We can evidently cross terminals without a change in ground by including a

transformer in the loop. In ordinary situations, however, the inclusion of a trans-

former so restricts the available feedback, as determined by the methods described

later, that Fig. 3.11 represents a preferable solution.
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first tube can return to its cathode only by flowing through the circuit

impedance, so that some voltage would be returned to the first grid even

if the second tube were removed. In Fig. 3.125 a similar situation holds

for both the first and third tubes.

Speaking rather roughly, we can suppose that the /S circuit impedance
operates independently in producing this residual feedback and in produc-

ing the principal feedback. For example, Fig. 3.13 gives the approximate

equivalent of Fig. 3.125 under this method of treatment. It is obtained

Fig. 3.13

from the original series feedback amplifier of Fig. 3.12^ by inserting new
impedances equal to the /3 circuit impedance in the cathode leads of the

first and third tubes. The first and third tubes can evidently be regarded

by themselves as miniature feedback amplifiers of the series type. These
tubes thus have more total feedback than would appear if we considered
only the transmission around the principal loop. On the other hand, since

the local feedback reduces their gain, the transmission around the principal

loop will be decreased unless some compensating change is made.

3.5. Multiple Loop Feedback Amplifiers

The circuits of Figs. 3.115 and 3.125 are examples of multiple loop

amplifiers, or in other words of amplifiers in which voltage can be returned

to some of the grids by more than one path, so that the effective feedbacks
on the various tubes are different. In these particular structures the

subsidiary paths are accidental results of the type of feedback connections

adopted. In current amplifier development, however, there appears to be
an increasing tendency to turn to multiple loop circuits deliberately in

order to obtain results not available from single loop structures.

One simple type of multiple loop structure is shown by Fig. 3.14. The
circuit is a series feedback amplifier with additional feedback on the last

tube through the insertion of an impedance in its cathode lead. The
structure is thus similar to the " equivalent " amplifier previously shown by
Fig. 3.13, except that since the local feedback is now produced by the
impedance Zp2 , which is independent of the principal feedback impedance
Zpu it can be chosen arbitrarily. We can look upon the circuit as a device
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for securing more reduction in the non-linear distortion in the last tube than

can be obtained, according to the principles laid down later, by feedback

around the main loop alone.

Fig. 3.14

Figure 3.15 shows a second type of multiple loop structure. It is similar

to that shown by Fig. 3.14 except that the local path represents shunt rather

than series feedback. The subsidiary path may be regarded either as a

Fig. 3.15

branch deliberately added to improve the characteristics of the output

tube, as in Fig. 3.14, or as a representation of a large parasitic grid-plate

capacity, such as is found, for example, in the power triodes used for radio

broadcasting.

Fig. 3.16

Still a third example is shown by Fig. 3.16. Here local series feedback

is applied around the first two stages of the complete n circuit. We may
imagine the local feedback to be regenerative, so that it provides a higher

HJ3 gain around the complete loop than would otherwise be obtainable. In

addition to the particular structures shown by Figs. 3.14 to 3.16, many
Other multiple loop amplifiers can evidently be secured either by combining
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two or three of the local feedback paths shown by these figures in a single

amplifier or by providing still more paths.

3.6. Other Feedback Circuits

The preceding sections have been intended as a brief sketch of the types

of physical configurations directly envisaged in this book. They are com-

posed characteristically of linear vacuum tubes and passive elements.

Feedback circuits may, however, also be designed to include non-linear or

non-electrical elements. Many of these are sufficiently similar in funda-

mentals to a linear electrical circuit to be treated by the same methods,

provided the proper precautions are taken.

The diversity of applications will be indicated by two illustrations. The
first consists of a feedback circuit including frequency translating devices.

Figure 3.17, for example, shows

a radio transmitter in which

a portion of the output is de-

modulated and returned to

the signal input as voice fre-

quency or " envelope " feed-

back. If the modulator and

demodulator are nearly ideal

and the carrier frequency is

much higher than the voice band this can be analyzed essentially as a lin-

ear circuit. It is merely necessary to consider the transmission of an

equivalent voice frequency around the complete loop. If the modulator

outputs include a variety of products which can be transmitted around

the loop, however, or if the carrier frequency is within a few octaves of the

top of the voice band, the situation is more complicated and will not be

considered here.

The second general example is furnished by regulator circuits for such

purposes as speed, voltage, or frequency control. Here the fact that the

control circuit acts as a valve, producing a large change in output for the

comparatively slight expenditure of energy required to change the control,

gives an equivalent of vacuum tube amplification. The use of a portion

of the output to adjust the control circuit is, of course, feedback. There

is no definite useful band, in the sense in which this term is ordinarily

understood in communication circuits, but an approximate effective band
can ordinarily be assigned the circuit from a consideration of the rapidity

with which the controls should operate. The essential problem, of course,

is to avoid hunting, which is the equivalent of instability in a feedback

amplifier.

Fig. 3.17



CHAPTER IV

Mathematical Definition of Feedback

4.1. Introduction

The conception of a feedback amplifier developed in the preceding

chapter can be summarized in the following words: The amplifier consists

of a forward or /x circuit and a backward or /3 circuit. The feedback can
then be determined from the product At/3, which represents the transmission

around the complete loop formed by the n and /3 circuits together. The
circuit has the fundamental physical property that the effects of variations

in the n circuit, whether they are taken as changes in the normal p gain or as

departures from strict linearity or from freedom from extraneous noise,

are reduced by the factor 1 — /jfi in comparison with the effects which
would be observed in a non-feedback amplifier.

This set of conceptions is almost indispensable in describing a feedback

amplifier or in reasoning generally about the functions of the various parts.

They will be retained here for this general purpose. For future analytical

work, however, they are extended in this chapter to provide a purely mathe-
matical definition of feedback. The mathematical definition is framed in

terms of the general mesh or nodal equations introduced in the first chapter.

The system of equations is taken with reference to the complete amplifier,

without distinction between n and fi circuits, so that these conceptions

disappear from the formal analysis.

This change is made for two reasons. The more obvious one is the fact

that the mesh or nodal analysis furnishes a convenient foundation for

further theoretical work. It is especially appropriate in discussing the

relationship between feedback and stability.

The second reason for developing a general definition of feedback in

terms of the equations of the circuit as a whole is that it allows us to avoid

the ambiguities and uncertainties which appear if we rely exclusively upon
an analysis in terms of separate n and {} circuits. The n and /3 analysis

supposes that these circuits are clearly distinguishable entities to which can

be ascribed definite properties independently of one another. This was
suggested, for example, in the generalized sketch shown by Fig. 3.1 of the

preceding chapter. In fact, however, the actual physical configurations

shown by the figures which appeared later in the chapter do not permit

such a clear-cut separation between the two circuits so that what we are to

44
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call n and what j3 remains somewhat vague. Since the properties of gain

stabilization and distortion reduction hold only for the /* circuit, and the

eventual gain is determined by the j3 circuit, this is a matter of considerable

importance.

The simplest example of the difficulty of distinguishing sharply between

H and /3 is furnished by the computation of gain from the familiar equation

1 - W8

The computation requires a knowledge of ju and m0. The product m/3>

representing the transmission around the loop, is itself well denned. The
(i which must be used in order to make the equation an accurate expression

for the amplifier gain is, however, not so apparent. It depends in part upon

the way in which the current divides in the six-terminal connecting net-

works shown at the ends of the amplifier in Fig. 3.3 of the preceding chapter.

In evaluating n we must therefore make some allowance for the /? circuit

impedance, instead of removing j3 entirely, since otherwise the division of

current in these networks will, in general, be changed. For particular cir-

Fig. 4.1

cuits this can be examined by setting up detailed circuit equations, but

without further theoretical study it is difficult to see, in general, just what

branches of the (3 circuit should be included in making the allowance, and

in any event it is clear that the problem of designing a fi circuit to give a

specified external gain characteristic may be confused by the fact that any

elements we put in affect both /t and nfi.

The difficulty of separating the amplifier into n and parts may become

much greater in a multiple loop structure containing several feedback

paths. A particularly extreme example is furnished by the cathode feed-

back circuit shown by Fig. 3.125 in the preceding chapter. As drawn

there, the circuit includes only the elements which would be supplied in the

design process. In a physical embodiment, however, it would be necessary

to consider also the parasitic capacities between grid and cathode and

between plate and cathode in each tube. When these are added the circuit

appears in the form shown by Fig. 4.1. For design purposes it is possible to

divide the elements of the circuit into a group which is most important
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in determining forward gain and another which is chiefly effective for feed-

back. It is clear, however, that no sharp division into fi and P circuits can
be made. Every element in the structure enters to some extent into both
forward and backward transmission.

4.2. Return Voltage and Reduction in Effect of Tube Variations

The consideration of multiple loop structures leads to another reason for

developing a general mathematical definition of feedback, which may be
less obvious than those previously discussed. In a single loop structure the

fundamental quantity appears to be the loop transmission /i/3. This is the
same as the return voltage which would appear by transmission around the
complete loop if we applied a unit voltage to any grid and opened the circuit

just behind it. In such a structure we know that the factor measuring the
reduction in the effect of tube variations is 1 — ju/3, so that it is always
closely correlated with the return voltage.

In a multiple loop structure voltages may be returned to the grids of the
tubes by various paths which differ from tube to tube. For any particular

tube, however, the total return voltage can be

obtained, at least on paper, by adding together

the contributions from all available paths through

the network. This is illustrated by Fig. 4.2.

N represents the complete circuit exclusive of the

tube in question and Px and P2 , connected to-

gether, the grid terminal for normal operation.

The return voltage can then be defined as the
voltage which would appear between P t and G in response to a unit voltage
between P2 and G when the connection between Pj and P2 is broken. The
grid-plate and grid-cathode capacities Ct and C2 are shown as going to Px to
indicate the fact that opening the loop should not disturb the admittances
seen from the end point Pi.

Given any individual tube, it is also possible to determine the ratio

between a prescribed small variation in its gain and the resulting change in

the transmission characteristic of the complete circuit. It is natural to
suppose that the correlation between this ratio and the return voltage on
the tube will be the same for a general circuit as it is for a single loop
structure. This is substantially true in the simplest and most common
circuits. In exceptional circuits, however, the actual effect of individual
tube variations on the final transmission characteristic may be much greater
or much less than would be predicted from the return voltage. One of
the objects in setting up a general mathematical definition of feedback is

therefore to determine when the return voltage computation is a reliable

Fig. 4.2
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index of the effect of tube variations and what corrections must be applied

when it fails.

One other aspect of the general situation deserves attention. Since the

vacuum tubes are ordinarily the most variable and non-linear constituents

of a complete amplifier, feedback is of engineering importance chiefly in

correcting for their characteristics. An incidental result of the application

of feedback, however, is the fact that it also reduces the effect of variations

in some of the bilateral elements of the circuit. The effects of variations

in the elements of an interstage impedance, for example, are reduced by
feedback to the same extent as are those of variations in the transconduct-

ances of the associated vacuum tubes. In any discussion of the relation

between feedback and the effects of element variations, it is therefore

legitimate to extend consideration to bilateral as well as unilateral elements.

The analytical treatment of feedback developed in this chapter applies, in

fact, equally well to elements of either type. In order to simplify exposi-

tion, however, each step in the development is introduced as though uni-

lateral elements only were in question, the extension of the analysis to

bilateral elements being described subsequently.

4.3. Return Ratio, Return Difference, and Sensitivity

The preceding section has indicated that the usual conception of feedback

includes two distinct ideas. The first is that of a loop transmission or

return of voltage, and the second that of a reduction in the effects of varia-

tions in the tube characteristics. In normal circuits these two are related

by simple mathematical laws so that the term " feedback " can refer

generically to both.

In exceptional circuits, when the correlation between the two breaks

down, the first idea is evidently the one which most nearly agrees with the

usual physical conception of feedback. It will therefore be taken as the

basis for the definition of feedback in the general case. To prevent any

possible confusion, this idea will also be described by the new name return

difference. It is still worthwhile, however, to retain the general idea of a

reduction in the effects of tube variations. This will be referred to by the

name sensitivity.

The return difference, or feedback, and the sensitivity will be repre-

sented by the symbols F and S, respectively. They are to be regarded as

the analogues, in general, of the quantity 1 — i*(i in a single loop structure.

Thus, " return difference " is an abbreviation for " return voltage differ-

ence," meaning by this the voltage difference existing between P\ and P2
m Fig. 4.2 under the conditions of measurement indicated there. The
quantity 1 — /t/3, rather than fi/3 itself, is chosen as the fundamental unit,

because it turns out to lead to simpler and more compact formulae in most
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situations. In order to have a symbol corresponding to the loop trans-

mission pfi itself, however, we will also write F = 1 + T. Thus, T = — ju/8

in an ordinary amplifier.* T will be called the return ratio. To complete

the nomenclature, we might similarly introduce a symbol for the quantity

S — 1, but the number of occasions when such a symbol would be useful is

too small to make this step worthwhile.

4.4. Definitions of Return Ratio and Return Difference

In order to secure more precise definitions of the quantities described in

the preceding section, let the input of the general circuit be taken as the

first mesh or node, and the output as the second mesh or node. We will

also suppose that the grid and plate terminals of the tube under examina-

tion are labeled respectively 3 and 4, and that its transconductance or

mutual impedance is represented by W. W is thus a constituent of Z43 or

Y43 in the general system of mesh or nodal equations. In later sections the

definitions of return ratio and return difference will be extended to bilateral

elements. The form of these statements remains the same whenW is a bi-

lateral element, except that it is taken as a constituent of the self-impedance

or admittance Z33 or Y33, rather than of the coupling term Z43 or Y43.

The loop transmission or return voltage in Fig. 4.2 can be obtained by
multiplying the transimmittance, W, of the tube itself by the backward

transmission from the plate to P\. In making the latter calculation, the

open circuit which appears between P\ and P2 can evidently be represented

by supposing that Pi and P2 are connected together, as in normal opera-

tion, but that the tube is dead. If we let A represent the circuit deter-

minant when W = 0, therefore, equations (1-10) and (1-24) of Chapter I

give the backward transmission as A43/A . Since the negative sign intro-

duced by the phase reversal in the tube is canceled by the fact that T is

analogous to — m/3, we therefore have

F= l + T=l+JF^f • (4-1)

But it follows from the discussion in connection with equations (1—11) to

(1-14) that A + /FA43 is the value which the circuit determinant assumes

when the tube transimmittance has its normal value W. If we represent

the normal circuit determinant by the usual symbol A, therefore, equa-

* The introduction of the minus sign may be explained by the fact that an ordinary

feedback amplifier contains an odd number of tubes, which contribute an odd number

of phase reversals to the loop. Thus T, as defined, is equal to the loop transmission

without these phase reversals, and will ordinarily be a positive quantity except for the

effects of possible phase shifts in the interstage or feedback networks. The sign chosen

for Tis also more convenient in dealing with bilateral elements.
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tion (4-1) can also be written as

F=jo' (*-2)

In order to emphasize the importance of this last formula, and to pave the

way for the treatment of bilateral elements in a subsequent section, the

relation embodied in (4-2) will be restated as the

Definition: The return difference, or feedback, for any element in a

complete circuit is equal to the ratio of the values assumed
by the circuit determinant when the specified element has

its normal value and when the specified element vanishes.

Equation (4-2) probably represents the most convenient working for-

mula for the analytic treatment of feedback. A number of examples of its

use in feedback circuit analysis will be given in the next chapter. The
fact that the equation expresses F in terms of the determinant of the system

is particularly convenient in studying the relation between feedback and
stability since, as we shall see later, the roots of the determinant tell whether

or not a system is stable. The formula is also especially useful in studying

multiple loop systems, since if we once know the determinant we can

readily evaluate the individual feedbacks without making a complete sepa-

rate calculation for each tube.

4.5. Return Differencefor a General Reference

It is convenient to introduce here a generalization of the conception of

return difference whose meaning will probably not be fully apparent until a

considerably later point. In developing equation (4-1), we based the

calculation, in a sense, upon the reference condition of the circuit obtained

by settingW = 0. Thus the backward transmission from plate to grid was
obtained for this condition of the circuit, and the forward transmission ff,

by which the backward transmission was multiplied to produce the com-
plete loop gain, may be thought of as W — 0, or the surplus of the actual

tube transimmittance over this reference value.

We can evidently perform a similar computation for any reference con-

dition W = k. The " loop gain," then, becomes the effective transimmit-

tance, W — k, multiplied by the backward transmission from plate to grid

evaluated for the conditionW = k. Since the tube is no longer completely

dead, this backward transmission must include the effects of a certain

amount of physical feedback, but this is a practical rather than a theoretical

complication. The reference k can be anything we like. For example, it

might be the value of transimmittance at which the tube would be dis-

carded in favor of a new one, or it might be the transimmittance which
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would lead to a certain specified gain through the over-all circuit. The

latter condition is the one which will be used in future applications of this

concept.

The return ratio and return difference resulting from this computation

will be spoken of as the return ratio and return difference of W for the

reference k. If Fk represents this return difference, we evidently have

Fh =l + i}V-k)^, (4-3)

where A* is the value assumed by A when W = k. But since

A* = A + kA4S and A = A + /FA43 , where A is, as before, the value of

A when W = 0, equation (4-3) can be rewritten as

This equation is obviously analogous to (4-2) and, like (4-2), will be

regarded as a definition in future discussion.

Equation (4-4) leads to an easy method of computing the return differ-

ence for the reference k from the return difference for zero reference.

Thus, if we multiply and divide the right side of (4-4) by A , we have

A AFum = - -
k

(4-5)

_ FjW)
~ F{k)

'

Stated in words, this result is the

Theorem: The return difference ofW for any reference is equal to the

ratio of the return differences, with zero reference, which

would be obtained ifW assumed, first, its normal value, and,

second, the chosen reference value.

The conception of a return difference for a reference other than zero will

be utilized at the end of this chapter. Meanwhile, it can be assumed that

the term " return difference " applies only to the zero reference case.

4.6. Return Differencefor a Bilateral Element

In setting up equation (4-2) as a definition of return difference, we evi-

dently extended the analysis formally to bilateral as well as unilateral ele-

ments, since A and A are meaningful quantities for elements of either type.

The physical significance of the return difference of a bilateral element, on
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the other hand, is most easily studied if we replace (4-2), for a bilateral

element, by an equation more nearly in the form of (4-1). This is readily

done. Thus, if W is a constituent of F33 or Z33 , we evidently have

A = A + WA33 in the bilateral case. Substitution of this relation in

(4-2) gives

F= 1 + T= 1 +0^r' (4-6)
A

which is like (4-1) except that A43 is replaced by A33 .

The meaning of the return difference for a bilateral element is easily

understood from an examination of the terms in (4-6). Let it be sup-

posed, for example, that W represents an impedance. Then A°/A33 repre-

sents the impedance which would be seen by a generator in the mesh con-

taining W if W were zero. In other words, it is the impedance which

W faces. The return ratio T = /FA33/A° is therefore equal to the ratio

of the impedance W to the impedance presented to W by the rest of the

circuit. The return difference F is equal to the ratio of the complete imped-

ance, including W, to the impedance of the external circuit. Similarly, ifW
represents an admittance, the return ratio T and the return difference F
are, respectively, equal to the ratio of the admittanceW to the admittance

of the rest of the circuit, and the ratio of the admittance of the complete

circuit, including W, to the admittance of the rest of the circuit.*

Viewed in this light, the conception of return difference for a bilateral

element appears as an expression of the fact that a generator with internal

impedance cannot be fully effective in driving an external circuit. The

internal voltage drop is the " returned " voltage. It is " returned " to the

source in the sense that it is unavailable to drive the external circuit.

Thus, suppose that W is the impedance Z and that the impedance of the

external circuit is represented by Z . In the absence of Z a unit generator

would produce a current 1/Z in the circuit. The insertion of Z into a cir-

cuit carrying this current is equivalent to adding or " returning " the volt-

age —Z/Z to the source. The current strength is not supposed to be

changed when Z is added since this is the logical equivalent of opening the

loop in the unilateral case to prevent the return voltage itselffrom produc-

ing a response. The return difference is then the difference between the

* These relations hold, of course, for both active and passive circuits. If the circuit

does in fact contain vacuum tubes, however, it is important to notice that the imped-

ance assigned to the external circuit must be the active impedance obtained when the

tubes are lit. This may be quite different from the impedance which would be

obtained from the passive elements alone. Methods of computing the active imped-

ance from the passive impedance are described in the next chapter.
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original and the returned voltage and measures the net voltage available to

drive the external circuit.

4.7. Definition of Sensitivity

We turn now to the second leading conception of the present chapter,

that of sensitivity. This conception can be illustrated by reference to

equation (3-6) of the preceding chapter, which appeared as

dEB 1 d\x

Evidently, the equation states in effect that 1 — pfl is the factor relating

any given percentage variation in the m circuit to the resulting percentage

variation in the output voltage. In other words, 1 — ju/3 is a measure of the

sensitiveness of the over-all circuit to small variations in /j..

Equation (3-6) is, of course^ limited to the n elements in an ordinary

feedback circuit. In order to generalize appropriately to any circuit, let

the gain through the complete system be represented by 0. We then have

the

Definition: The sensitivity, S, for an element W is given by

f"S—
<4"7)

dlog/F

The definition is intended to apply to both unilateral and bilateral elements.

The relation between (4-7) and (3-6) may be made more apparent if

we express 6 in terms of the logarithm of the output voltage Er, and replace

the partial derivative by ordinary differentiation, on the assumption that

W is the only element in the circuit which varies. This allows (4-7) to be

written as

^ = 1^. (4-8)

Thus, S is the ratio between a given percentage change in W, in the general

case, and the resulting percentage change in the delivered voltage Er, just

as 1 — m/3 expresses the corresponding ratio between changes in y. and Er
in the special case of the single loop amplifier.

In an average situation, we may expect S to be of the order of magnitude

of unity. In an ordinary non-feedback amplifier, for example, the over-all

gain varies by 1 db for each db change in the gain of any one of the tubes,

and S for any tube is evidently 1 exactly. On the other hand, S may be

much greater than unity. Thus, ignoring phase angles, if the final gain
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varies by 0.01 db for 1 db variation in W, the sensitivity S is 100. This is

the result we would expect for the elements in the forward circuit of an

amplifier with 40 db feedback. We might also secure such a result, how-

ever, even in a purely passive circuit, if W were an impedance element

having comparatively little to do with the over-all transmission.

It is also possible for S to be much smaller than unity. This might occur,

for example, in a regenerative amplifier at the point of singing or in an

ordinary circuit which depends on a critical bridge balance or on sharply

tuned reactance branches.

It is to be noticed that in the discussion of the return difference we
labeled the input and output terminals of the system, but the input and

output terminals did not actually enter into the analysis. Since the

sensitivity, on the other hand, depends upon the transmission through the

circuit, it must in general depend upon the nodes or meshes which we choose

to regard as the terminals of the system, as well as upon the chosen element

W itself.

4.8. General Formulafor Sensitivity

The definition of sensitivity given by equation (4-7) can be made more

concrete by an examination of the functional relationship between 9 and W.
If we retain the notation used in the preceding sections and represent the

output impedance or admittance by Wr, the gain through the circuit can be

written in the general form

e
B =^ Wn . (4-9)

A

The discussion of Chapter I shows, however, that both A12 and A must be

linear functions of W. If we let A12 and A represent the values of these

determinants whenW = 0, we can therefore write equation (4-9) as

This equation of course holds for any value of W. For purposes of future

discussion, it will be convenient to pay particular attention to the case

when W is zero. The gain under these conditions constitutes the so-called

direct transmission gain.* If we let 6 represent this gain, we evidently

have

eH = ^-WR . (4-11)

* So-called because it represents a current transmitted directly to the output,

without the intervention of the element W.
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Returning to the general formula (4-10), if we apply the definition of S
given by (4—7) to it directly, the result, after some manipulation, appears as

p _ 1 (A°l2 + fFA12i3 )(A° + irA43 )

W A%243 - A?2A43

' (4_12)

This can be simplified by means of a general identity in determinant theory,

which is of frequent application in network analysis. The identity is*

AAob , cd = Aa6Acd - AadAc6, (4-13)

where A is any determinant, a and c are any two rows of A, and b and d are

any two columns of A. If we let A of (4—12) be the general determinant A
which appears in this equation and make the proper identifications of

subscripts, this allows (4—12) to be written as

1 AA12
i" = • — • (4-14)^A13A42

K™>
If we assume that /if is a bilateral element in Z33 or Y33 , rather than a uni-

lateral element in Z43 or Y43 , all the steps from (4-9) to (4—14) can be

repeated exactly, except that each subscript 4 is replaced by a subscript 3.

4.9. Return Difference and Sensitivity in Simple Cases

The general formula (4—14) in the preceding section was developed

largely as a matter of completeness. In actual practice, it is ordinarily

easier to evaluate the sensitivity indirectly from the return difference.

In general, the sensitivity and the return difference for a given element

are not equal, so that if we are to calculate S from F it is first necessary to

establish the relation between them. This will be the subject of the next

several sections. For the moment, however, it is convenient to dispose

of the especially simple case when the two are, in fact, equal. This occurs

when the direct transmission term (4—11) vanishes. If we assume, then,

that A12 is zero, the analysis of the preceding section becomes very much
simpler. Thus, if we substitute this condition directly in equation (4—12),

we readily find

This, however, is exactly the same formula as the one which was developed

for the return difference in equation (4—2). We therefore have the

Theorem: The sensitivity and return difference are equal for any ele-

ment whose vanishing leads to zero transmission through

the circuit as a whole.

*
See, for example, Scott and Mathews Theory of Determinants, p. 64.
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The most familiar examples of elements meeting this condition are

probably the tubes in the forward circuit of an ordinary feedback amplifier.

We can assume, for practical purposes, that the transmission through the

structure will be zero if any one of the tubes fails. In strict accuracy, this

is seldom exactly true. Some current will ordinarily* trickle through the

|8 circuit into the load, even when n = 0. This trickle, however, is usually

so much smaller than the normal output current that it can be neglected,

so that the forward circuit can be regarded as falling within the scope of the

theorem for practical purposes. In this case, of course, the theorem express-

es nothing new. Since the theorem requires no assumption except that of

negligible direct transmission, however, its application can evidently be

extended to circuits which differ fairly substantially from the conventional

single loop configuration.

In the field of bilateral elements, simple examples of the theorem are

obtained from series-shunt or ladder networks. We can obtain zero trans-

mission when W = in circuits of this type by
adopting an impedance analysis if W represents

an element in shunt, or an admittance analysis if
\

zi\ \

z
\ \

zz
W is an element in series.

A specific example is furnished by the circuit

of Fig. 4.3. The transmission is supposed to

take place from Z\ to Z2 , while Z represents the
IO

' '

variable W. The return difference is an impedance ratio which can be

written down by inspection as

z + ZlZ2

„ Zi + z2 ZXZ2 + Z{Z1 + Z2 )F =—77 = y~z (4-16)
Z/jZ/2 /^1^'2

zTTzz"

On the other hand, the current flowing in Z2 in response to a unit generator

in Zi is given by

e
Z

6 ~ Z1Z2 + Z(Zl +Z2
)' (4_17)

Hence,

Z\Z2 dZ

ZXZ2 + Z(ZX + Z2 ) z
(4-18)

Since the coefficient on the right-hand side of (4-18) is l/S, by (4-8), the

theorem is verified for this case.

* That is, in the absence of a balanced bridge at either input or output.
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A second example, this time for a bridge circuit, is furnished by Fig. 4.4.

The transmission is from Z\ to Z6 and the variable element is taken as

Z, the remaining impedances being so chosen

that the bridge is balanced when Z vanishes.

For simplicity, let every impedance but Z
be taken as 1. This makes Z and Z4 con-

jugate so that Z4 can be removed in deter-

mining the impedance which Z faces. With

^ . . the help of this simplification, we readily

\) Vl^ /o ^nt^ tnat ^ ^aces tne impedance 2. We
therefore have

2 dZM = ^ ~ -77 • (4-19)
Fig. 4.4 2 + Z Z V '

This can be verified by direct consideration of the transmission equations

for the bridge, but the algebra is too lengthy to be included here.

4.10. Circuits with Appreciable Direct Transmission

We turn now to situations in which the assumption of negligible direct

transmission is no longer valid. Instances of elements giving a substantial

direct transmission term are readily found even in conventional single loop

amplifiers. For example, the /3 circuit elements belong generally to this

class, as do many of the elements in customary input and output circuits.

In the field of passive circuits, the elements of bridge type networks are

usually of this type.*

More difficult situations involving a substantial amount of direct trans-

mission may be found ifW is the transimmittance of a tube in a multiple

loop circuit. An example is shown by Fig. 4.5. The structure is drawn as

a single stage feedback amplifier but it may also be taken as the last stage

in the double loop feedback structure shown by Fig. 3.14 of the preceding

chapter. The impedances Z\ and Z5 can be regarded as the terminating

impedances in the single stage case. Z3 represents the feedback branch and

Z2 and Z4 are, of course, parasitic grid-cathode and plate-cathode imped-

ances.

When the gain of the tube vanishes, the circuit reduces to the form shown
by Fig. 4.6 and in the single stage case the transmission through this net-

work evidently represents the quantity e
e
° defined in equation (4—11). By

proper adjustment of the elements Z2 , Z3, and Z4, the transmission through

this path can be made anything we like in comparison with that through

* That is, in the absence of special situations like that of Fig. 4.4, where the bridge

is supposed to balance when the variable element is zero.
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the tube. For example, if Z3 is very small while Z2 and Z4 are quite large,

the direct transmission becomes insignificant. If we make Z2 and Z4

small enough, however, and Z3 very large, it may be much more important

than the transmission through the tube. By proper adjustment of the

impedances, we can also secure an intermediate case in which the two

paths exactly cancel, so that the net output under operating conditions is

zero. In ordinary physical cases, Z3 will, of course, be small, while Z2 and

Z4 will be quite large so that we can regard the directly transmitted current

as being much smaller than that flowing through the tube.

Fig. 4.5 Fig. 4.6

When the circuit represents a complete amplifier, this means that the

directly transmitted current can be neglected in any ordinary situation.

If the circuit is the last stage of a multiple loop structure, on the other

hand, the rest of the structure must also be considered in determining the

direct transmission to the final output impedance. In this case, even a

slight trickle of current directly through the passive elements of Fig. 4.6

may be important in some circumstances. The reason for making this

distinction will appear in a later section.

4.11. General Relation between Sensitivity and Return Difference

When the direct transmission is substantial, it is simplest to use it as a

reference from which the remainder of the actual output voltage or current

is calculated. We are then concerned explicitly only with the difference

between the normal output and the directly transmitted term. Thus, from

(4-10) and (4-1 1 ) we can write

A?2 + WA1243
tf — e"° =

A + PFA43
WR -^WR

JF(A°A1243 - A?2A43 ) WR .

A°(A° + /FA43 )

This can be simplified with the help of the general relation (4-13)

result is

-JTA13A42
e°° =

A°(A°+ /^A43 )

WR

(4-20)

The

(4-21)
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Let us now consider the " sensitivity " of the quantity e — e
e
°, using the

term in our customary fashion to-mean the ratio between a given percent-

age variation in W and the corresponding percentage variation in e
e — e

e
°.

.

As a function of W, the right-hand side of (4—21) is very like (4-10) in the

special case A°2 = 0. The only difference is the fact that A1243 in (4^10) is

replaced by — Ai3A42/A in (4-21 ) . But when we calculated the sensitivity

from (4—10) for the special case A° 2 = 0, we were led to (4-15), which does

not depend upon A1234. We may therefore draw the following conclusion:

Theorem: The sensitivity of the difference, e
e — e

e
°, between the

normal output and the direct transmission for any element

Wis equal to the return difference for W.

This result, of course, includes our earlier theorem on circuits with zero

direct transmission as a special case. If we begin with that earlier theorem,

the present result is an obvious one for a circuit composed of two inde-

pendent parallel paths, one of which contains W and has no direct trans-

mission, and the other of which furnishes the over-all direct transmission

and is independent of W. This is a situation which is very unlikely to

occur physically, since there would almost always be interaction between

the two paths at input and output terminals, if nowhere else, but the theo-

rem states in effect that any circuit can be thought of in these terms even

when the physical separation into two independent paths cannot be

achieved.

The theorem just established can also be stated in an analytic form which

is somewhat more convenient for purposes of calculation. It is obvious

that if the output voltage of the system varies by a given amount, the per-

centage change which the given variation represents will be inversely pro-

portional to the output we are considering. Thus, the percentage changes

in e and e — e °, corresponding to a given variation in the element TV, will

be in the same ratio as the quantities e
e — e

6
" and e

e
. Since sensitivity is

an inverse measure of percentage change, from (4-8), the result expressed

by the theorem can therefore be transformad immediately to the relation

F e
B - e

9° e
e°

^ = ^- = 1 -7' (4~22)

where S is, as before, the sensitivity for the complete output e
e

. This

result can also be established by direct calculation from equations (4-2),

(4—10), (4—11), and (4—14). It holds for any circuit and for either uni-

lateral or bilateral elements.

Equation (4—22) is of particular interest as a means of estimating quickly

whether the return difference is a reliable measure of sensitivity or whether

a more elaborate calculation should be made. Since we are ordinarily



MATHEMATICAL DEFINITION OF FEEDBACK 59

interested in the sensitivity only to within several db, we can say, in general,

that the return difference will be a conservative measure of sensitivity as

long as the absolute value of e
e
° is not greater than that of e

e
. It will,

however, be a very pessimistic estimate if the two quantities happen to be

nearly equal in phase angle as well as magnitude. On the other hand, the

sensitivity is much poorer than the return difference in circuits for which the

absolute value of e
e
° is much greater than that of e

e
.

The use of equation (4-22) will be illustrated in more detail by a con-

sideration of three different situations. As a first example, let it be sup-

posed that W is the transconductance of one of the tubes in a normal feed-

back amplifier. We may suppose for concreteness that the normal gain e
e

is 40 db. The transmission e
e° which is obtained when JV vanishes will

depend somewhat upon the type of circuit which has been chosen. If

either the input or the output is a balanced bridge, so that the /3 circuit and

the line are conjugate, for example, this quantity is zero. In other circum-

stances it will not be precisely zero but we can estimate its value as — 40 db

from the general rule that the external gain is equal to the circuit loss.

Thus, the ratio e
e
°/e

e
is of the order of magnitude of — 80 db and the dis-

tinction between return difference and sensitivity is entirely negligible.

As a second example, let it be supposed thatW is in the j3 circuit. It may

be taken to represent a shunt impedance, a series admittance, or the trans-

conductance of the final tube in the circuit shown later by Fig. 4.9. In any

of these cases settingW = opens the feedback so that e
e
° is much greater

than <?". Variations in W are thus much more important in affecting the

final transmission characteristic than a calculation of the return voltage

would indicate. This is, of course, to be expected for elements in the

j3 circuit.

The third situation is represented by the circuit shown previously by

Fig. 4.5. If this structure is taken as a complete feedback amplifier, the

situation is essentially the same as that first described. The only difference

results from the fact that, since the circuit contains only a single tube, 6

and would probably be numerically smaller than was assumed there. We
might suppose, for example, that the ratio e

e
"/e

6
is —30 db. This would

still give a negligible distinction between return difference and sensitivity

for most applications. An entirely different situation, on the other hand,

may be obtained if the circuit is the last stage of a double loop amplifier.

In these circumstances O and refer to the transmission characteristics of

the complete amplifier and in virtue of the feedback around the principal

loop this may not be much affected even by a considerable change in the

transmission of the last tube. For example, if the normal feedback around

the principal loop is 40 db, the assumed decrease of 30 db in the gain of the

circuit of Fig. 4.5 when W vanishes will still leave a net feedback of 10 db
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around the principal loop. The difference between e
e
" and e

e
is thus only

that due to the change in the /x/8 effect in the principal loop caused by the
reduction from 40 to 10 db. It is clear therefore that F will be much
smaller than S in (4-20), so that the actual stabilization of the circuit

against variations in the last tube is much greater than would be indicated

by a computation of the return voltage on that tube.*

4.12. Reference ValueforW
The method of computing sensitivity which we have thus far considered

consists essentially in separating out the directly transmitted component

Fig. 4.7

of the total output current, so that in effect it becomes the origin from
which the net output current is computed. This is illustrated for an
ordinary single loop amplifier by Fig. 4.7. The actual bilateral circuit in

the amplifier is represented symbolically as the sum of the two unilateral

* A physical interpretation of this apparently surprising result can be obtained by
noticing that in the multiple loop structure voltage can be returned from the plate of
the last tube to its grid by two different paths. The first passes through the principal

£ circuit and the first stages of the forward circuit, while the second passes directly

through the local feedback elements. These two paths together can be regarded as

forming a feedback amplifier, the /j. circuit of which is the first path, while the /3 circuit

is represented by the second. Under the conditions which have been assumed, there is

a net gain around the complete feedback loop of this amplifier and the insertion of the

feedback path must therefore diminish its gain. The insertion of the local feedback

elements in the final structure, in other words, reduces the return voltage on the last

tube.

Speaking approximately, the difference between F and S is an indication that this

effect should be neglected. The return voltage which most nearly represents the

effective stabilization of the circuit against variations in W is that which would be
obtained if the local feedback network were omitted. To a first approximation, the

insertion of the local feedback circuit does not affect the feedback on the last tube, but
it does of course affect the feedback on the remaining tubes by changing the trans-

mission characteristic around the principal loop. This is discussed in more detail in a
later chapter.
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components /Si and fo- If we suppose that the variable element W is here

identified with the whole n circuit, the component y32 will provide the

directly transmitted term. The use of this term as a reference is equivalent

to saying that the contribution of 182 to the final output is to be considered

separately from the contribution of the ideal feedback amplifier represented

by the combination of n and ft enclosed by the broken lines.

As an alternative to this procedure, we may also take account of the

direct transmission term by changing the origin from which the variable

element W is measured. In the circuit of Fig. 4.7, for example, we might

Fia. 4.8

begin by lumping fi and fa together, as shown by Fig. 4.8. The structure

thus becomes an ideal single loop amplifier, without direct transmission, in

which the effective forward gain is y! = n + /32 . This is equivalent to

computing p from the origin — /92 rather than from zero. The use of an
offset reference point for the variable element in this manner is merely an

unnecessary complication in most elementary situations, where the methods

we have already developed are adequate to deal with the problem. It is

worth some attention, however, since in certain circuits it leads eventually

to a simplified analysis. This will appear more clearly in Chapter VI.

For the general case the new origin forW will be called the reference value

of W. It will be symbolized by W§ and is specified by the

Definition: The reference value of any element is that value which

gives zero transmission through the circuit as a whole when

all other elements of the circuit have their normal values.

It was indicated earlier in the chapter that return difference computations

could in general be based upon any arbitrary reference value for W. From

this point of view, W<$ is only a special case which is called the reference in

recognition of the unique output current to which it leads. The reference

condition is evidently somewhat like a bridge balance and expressing W in

terms of its departure from W§ is similar to expressing the impedance of one

arm of a bridge in terms of its departure from the impedance which would
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give an exact balance, rather than in terms of its actual value. It will be

recalled that this is the device which was used to simplify the analysis of the

circuit in Fig. 4.4.

It is apparent from such an expression as (4-10) that Wq is given, for

unilateral and bilateral elements respectively, by

A?2W = - —^ » (4-23)
Al 243

and

A?2
fF = - -r

1- ' (4-24)

If we let W' represent the departure, W — W^, from the reference value,

such an equation as (4-10) therefore becomes

e° = -?^ Wr . (4_25)

a° - —£- a43 + rr'A43
Al243

This expression has the same form as a function of W' as the original

equation (4-10) had as a function ofW when we assumed A°2 = 0. Thus
we can apply to it the procedures we used previously to establish equation

(4-15) for the sensitivity in the case of zero direct transmission. Since a

given percentage change in W will not be equal to the same percentage

change in W, unlessW and W' happen to be equal, however, the " sensitiv-

ity " computed from (4-25) will not in general be equal to the sensitivity

defined in (4-7) or (4-8). To prevent confusion, therefore, the result of

the present computation will be called the relative sensitivity, symbolized

by S'. With this understanding, we can evidently write

d logW
where the symbol A is given by

A' = A - -^2- A43 , (4-27)
&1243

and evidently represents the value assumed by A when W' = 0. If (4-27)

is simplified by means of (4-13), the expression for S' can also be written as

s> = j _ w>
A«AiI43 = _ AA^ .

(4_2g)
A13A42 A13A42
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It is evident that there is a complete formal parallelism between this

analysis and that of an ordinary circuit with zero direct transmission. For

example, (4-26) is exactly like (4-15) except for the substitution of W'
forW and A for A . These, however, are exactly the modifications which

are made in converting a return difference for zero reference into a return

difference for the reference Wq. We therefore have the

Theorem: The relative sensitivity for any element W is equal to the

return difference ofW for the reference W§.

There remain the problems of determining S from more immediately

measurable quantities and of relating S to the actual sensitivity S. Of a

variety of equations which can be used to determine S', perhaps the

simplest is

S> =^- • (4-29)

where F{W) is, as usual, the return difference forW whenW has its normal

value, and F{JV§) is the return difference for W, calculated for W = W§.

This result follows immediately from (4—5). Another simple formula,

useful in special circumstances, is

S ' = J^ZTJe
' (4-30)

where e
9
°° stands for (A1243/A43)Ws and is, from (4—10), the transmission

through the system when the variable element W is infinite. IfW repre-

sents a tube, this condition is, of course, an unrealizable one. It is also

possible to determine S' from measurements made whenW = 0, by modify-

ing the circuit in certain special ways. The development of these methods,

however, is postponed until Chapter VI.

The most straightforward relation between S and 5 is probably

This equation can be established immediately if we recall that the distinc-

tion between S and S' is due only to the fact that a given actual change in

the physical network will produce different percentage changes in W and

W when these two quantities are unequal. Other useful formulae for the

relation between S and S' are

^ = Yzr\ (S' - 1), (4-32)
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and

S = S' +
,»«

e" — e"'
(4-33)

They are both readily established from the preceding general equations for

F, S, and S' and the identity (4-13). The various situations which may
arise in these equations for different relations between e

e° and e
6 can be

illustrated again by the examples used in the discussion of equation (4-22).

4.13. Reference Value ofW as an Index of Location in the yft Loop
If we exclude the special problems presented by multiple loop amplifiers,

the introduction of the reference value WQ into computations of sensitivity
is, in a broad sense, the analytical counterpart of the physical fact that the
properties of feedback circuits vary with the location of the element in the
loop. It corresponds in other words to the fact that the stabilizing and dis-
tortion reducing properties of feedback hold only for elements in the m
circuit. Since we cannot, at best, decide what part of the complete loop is

Fig. 4.9

M and what part is until we have chosen the input and output terminals,
these properties thus depend not so much upon the fact that a feedback
loop exists as they do upon the location of the element in question with
respect to the transmission path which is eventually of interest. The refer-
ence value Wq, since it depends upon the particular choice of input and out-
put terminals, takes this factor into account.

As the preceding examples have shown, the reference value for an
element in the ju circuit is ordinarily quite small so that with a large return
voltage the effective sensitivity is also large. When the element is in the
P circuit, on the other hand, the value ofW which will produce zero trans-
mission in the complete system is in general large and variations in W
when computed against this extreme reference correspond to relatively
little stabilization of the final amplifier transmission characteristics.

The way in which the reference value appears as an index of location can
be illustrated concretely by the circuit of Fig. 4.9. The structure is a
normal single loop feedback amplifier with the output impedance taken
as R2 ,

with the exception that the second interstage includes a transformer-
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resistance combination instead of some more conventional configuration.

Letting W represent the transconductance of the output tube and assum-

ing that the reference value forW is negligibly small, we readily find that

ER A W 1 + T W '
{ 3 }

where T = JF(A43/A°) and can be identified with the negative of the trans-

mission characteristic around the complete loop. This expresses the

familiar result that feedback reduces the effect of variations in the tube

gain by the factor 1 — ju/3.

Let it be supposed now that the output impedance is taken as Rly but

that i?2 is retained as an ordinary circuit element. The feedback loop,

regarded as a complete loop, is exactly the same as it was before. The
change in the choice of output impedance has, however, transferred the last

tube to the /3 circuit so that we may expect that the stabilizing properties

of feedback have disappeared for variations in the gain of this tube. The
situation can be analyzed by using the formula for relative sensitivity given

by equation (4-26). If we set A' = A — WA43 , this formula can be
written as

dER A - w'a43 dW
~e;

=—
i
—w (4~35)

We now determine the W which will lead to zero transmission through

the complete amplifier. In the present instance Wo must obviously be

infinite since zero transmission can be obtained only with an infinite /3

circuit gain. If Wo is infinite, however, W' must also be infinite and
(4-35) therefore reduces to

"p^-^fdW. (4-36)

Upon multiplying and dividing the right-hand side of (4-36) by W and A
and comparing with (4-34), this becomes

dER^_L°_ WAi3 dW -T dW
ER A A W \ + T W' {

'

where T still represents — ///? for normal operation. We can readily verify

that this is the correct formula by direct differentiation of the ordinary

equation for the gain of a feedback amplifier as a function of /3.



CHAPTER V

General Theorems for Feedback Circuits — A

5.1. Introduction

This chapter and the one which follows will continue the general dis-

cussion of feedback circuits begun in the preceding chapter in terms of the

definitions of return difference and sensitivity which were established there.

They have for their principal object the development of general theorems
on the relation between these quantities and impedance, gain, non-linear

distortion, etc. The theorems of the present chapter are developed from
simple mathematical identities which remain valid whatever the reference

values for the elements may be. They are thus stated in terms of the

return difference for a general reference, including the relative sensitivity

and the return difference for zero reference as special cases.

5.2. Impedance of an Active Circuit*

The first general theorem relates to the effect which feedback may have
upon the impedance measured between any two points of the circuit. In
addition to its general interest the theorem is of particular application with
respect to the calculation of the return difference for bilateral elements, since

it was shown in the preceding chapter that that depended upon the imped-
ance of the circuit to which the element was connected. In developing the
theorem it is supposed that the impedance which would be obtained in the

absence of active elements is first determined by ordinary circuit methods.
The theorem then is concerned with the modification produced in this

impedance by the addition of the active elements. This is, of course, the
heart of the problem.

The fact that the active elements must in general produce some effect is

easily seen if we consider, for example, the input impedance of an ordinary
feedback amplifier. By definition this impedance must be the ratio of the
input voltage to the current which flows through the line into the amplifier.

The net current which flows past the input terminals, however, is a com-
posite of the current which would flow if we considered only the passive
elements and of the current which is returned to the source through the
feedback circuit. The presence of this feedback current may obviously

* The material of this section is a modified version of results originally due to

R. B. Blackman (B.S.T.J., October, 1943).
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make the impedance of the amplifier quite different from the impedance

which we would measure if the tubes were not operating.

Although the impedance of an active circuit may be quite different from

that of the passive structure the relation between the two is easily built up.

Let it be supposed, for example, that we are interested in the active imped-

ance Z which would be measured from the terminals of a resistanceless

generator inserted in the »th mesh of the circuit. This is obviously

Z =~ (5-1)

Now suppose that we choose any element, W, within the network. It is

convenient to assume that W represents some mutual impedance Z,y,

although the final results are the same whether W is a unilateral or a

bilateral element. We can rewrite (5-1) as

A A A A°„

Unn "ran " "ran

where, as in the preceding chapter, A and a£„ represent A and An„ when
W = 0.

In equation (5-2), A°/A^„ is evidently the impedance which would be
measured ifW = 0. Assuming that W or Z,-y is the mutual impedance of

one of the vacuum tubes, then, we can call this the passive impedance Z
,

or the impedance which would be measured if this tube were dead. More-
over, A/

A

is the return difference for W with the circuit in its normal
condition, that is, with the terminals between which Z is measured shorted

together. In addition, Ann and A°„ are the coefficients of Z„„ in A and
A respectively. The ratio Anra/A°„ is therefore the limit approached by
A/

A

as Znn becomes indefinitely great. It consequently follows that

Are
»/A°„ represents the return difference for W when the self-impedance

of the Kth mesh is made infinite, or in other words when the terminals

between which Z is measured are left open. We can therefore write

equation (5-2) as

Z - Zo
F(<»)'

(5
~3)

where .F(O) and F( » ) are the return differences for W when the terminals

between which Z is measured are respectively short-circuited and open-

circuited.

If we base the analysis on admittances instead of impedances the result is

the same and we can write
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where F(0) and F(<x>) now represent the return differences with respect to

W when zero and infinite admittance, respectively, are added across the

terminals between which Y is determined.

Equations (5-3) and (5-4) describe the impedance or admittance at any

part of a feedback circuit in terms of the impedance or admittance which

would be obtained with any arbitrary element vanishing, and the return

difference for that element. If the arbitrary element W is the mutual
impedance or transconductance of a vacuum tube, therefore, we can dis-

count the effect of this active element in the circuit. In ordinary feedback

amplifiers zero gain in any one tube will interrupt the feedback circuit so

that the actual impedance or admittance can be computed directly from

(5-3) or (5-4) by choosing any one of the tubes as W. In more complicated

cases a single dead tube may not reduce the calculation of impedances to

the completely passive case. Evidently, however, by starting with all the

tubes as dead and applying (5-3) and (5-4) repeatedly as each tube in

turn is assigned its normal gain we can cover all circuits.

The analysis used in developing (5-3) and (5-4) has been based upon the

assumption that the reference for W is zero. Since (5-2) is merely an

identical form of (5-1), however, the zero value for W is a matter of indif-

ference and we can choose any reference we like as long as we choose the

same reference for both F's. The general result can therefore be stated in

the following words.

Theorem: The ratio of the impedances seen at any point of a network

when a given element W is assigned two different values is

equal to the ratio of the return differences for W when the

terminals between which the impedance is measured are

first short-circuited and then open-circuited, if the return

differences are computed by letting the first value ofW be

the operating value and the second the reference.

The relation between feedback and impedance can also be stated in

another way. Let it be supposed that an arbitrary impedance Zn is added
in series with the wth mesh, and let A' and A ' represent A and A , respec-

tively, after the introduction ofZn . The return difference for any W after

Zn is added can be written as

77 - ^L _ A + Z"A"" ,e ex
* - a ' - A° + ZnA°J

(5_5)

Now let Zn be so chosen that F = 0. Upon comparing the result with

(5-1) we readily establish the
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Theorem: The impedance seen in any mesh is the negative of the

impedance whose insertion in that mesh would give zero

return difference for an arbitrarily chosen element in the

circuit.

This is an obvious theorem in the light of the discussion of stability given

in a later chapter since it will appear that either a zero return difference or

zero impedance at any frequency corresponds to the possibility of a natural

oscillation in the circuit at that frequency.

EE'

Fig. 5.1

5.3. Examples of Active Impedances

To exemplify these relations we will consider the series feedback amplifier

shown by Fig. 5.1. Let the Z of equation (5-3) be the impedance which

would be measured in series with any one of the series connected branches

such as Z2 , Z6 or either of the high side transformer windings. In other

words it is the impedance which would be measured between any such pairs

of terminals as AA' , CC' , or DD' in Fig. 5.1.

It will also be assumed that the W of equations (5-1) and (5-2) is the

transconductance of any one of the tubes. With terminals AA' , CC', or

DD' shorted together the return difference with respect to W is

F(0) = 1 — /i/3, where /*/3 is the transmission around the loop computed in

the normal fashion. With the terminals opened, on the other hand, the

return difference with respect toW is unity. Equation (5-3) consequently

gives

Z = Z (l - rtS), (5-6)

where Zo is the impedance which would be measured with one of the tubes

dead and is evidently the ordinary passive impedance. The impedance

measured in any series line is thus much larger than the passive impedance.

For the impedance between A and A' for example we find

Z = (1 - 1X0) [Z
x + Z2 + Z3 ), (5-7)



70 NETWORK ANALYSIS Chap. 5

upon the assumption that the input and output impedances of the tubes are

very large in comparison with the impedances in the /3 circuit.

Next consider the apparent impedance which would be measured between
any such points as A or C and ground. We now find that the normal
return ratio will be obtained when the impedance connected between A or

C and ground is infinite and that the return ratio vanishes when the termi-

nals are short-circuited. In other words F(0) = 1 and F( » ) = 1 — /*/3.

Equation (5-3) thus gives

1 he impedance measured across the path of the feedback loop is therefore

reduced by feedback. For the impedance between A and ground, for

example, we have

Z = 1V z ——

.

(5-Q)

As a more complicated example we may consider the impedance meas-
ured across the terminals E, E' in Fig. 5.1. Here we have

Z - Z8 + 7 , 7 , 7 ' (5-10)
~7 T -^9 T" ^10

while

F(0) = 1 - tf,

F(oo) = 1 - tf—L-Sz^ +
z7 (z9 + z10 )

-

Z7 + Zs L Z7 + Z9 + Zio.

(5-11)

the factor multiplying ,u^ in the second equation being obtained by calculat-

ing the change produced in the transmission characteristic of the interstage

when E, E is open-circuited. The substitution of these values in equa-
tion (5-3) then gives the impedance sought for. If in particular we assume
that m/3 is very great the result becomes

Z = Z7 + Z8 . (5-12)

This result, of course, might have been foreseen from (5-6). If we con-
sider that Z7 and Z8 together represent a series impedance it follows from
this equation that the impedance of the circuit to which they are connected
must be very high if the feedback is large. Only Z7 and Z8 therefore need
be considered in determining the impedance at terminals E, E'.

These calculations have been based upon the first of the two theorems
given in the preceding section. The same results follow from the second
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theorem. As an example, we may return to the discussion of the effect of

feedback on a series impedance, as expressed by (5-6). Let the imped-
ance whose insertion in the series arm would reduce the return difference to

zero be represented byZ' . Its insertion in series with Z will produce the

loss Zq/(Z + Zq) in the transmission around the loop. For the return

difference to vanish, however, the loop transmission, ju/3, must be reduced to

unity. We therefore have

Z 1

Z' + Z riS

(5-13)

or

Z' = Gtf - 1)Z
, (5-14)

which is the negative of the active impedance given by (5-6).

5.4. Feedback for Bilateral Elements

A knowledge of the active impedances of the circuit makes it a simple

matter to compute the return differences and sensitivities of its bilateral

elements in accordance with the methods of the preceding chapter. As an

example we may choose the impedance Z6 of Fig. 5.1. By the previous

analysis, the return ratio for this element is equal to the ratio of its imped-

ance or admittance to the impedance or admittance of the circuit which

it faces, the return difference is equal to the return ratio increased by unity,

and the sensitivity is equal to the return difference suitably modified to

take account of direct transmission. If we exclude the slight trickle of

current directly through the /3 circuit, zero output current is obtained when
the branch Z6 is an open circuit. It is obviously convenient, therefore, to

use an admittance analysis, in which case the direct transmission term is

zero and the sensitivity can be taken equal to the return difference.

It follows from (5-3) that the impedance seen at terminals C, C of

Fig. 5.1 is (1 — fi^iZi + Z5 + Z6 ) and the admittance which Z6 faces is

therefore the reciprocal of (1 — m/3) (Z4 + Z5 4- Z6 ) — Z6 . Upon divid-

ing the admittance of Z6 by this admittance the return ratio and the return

difference or sensitivity for the element Z6 are obtained in the form

T = y6[(l - Mi3)(Z4 + Z5 + Z6 ) - z6],

and

F = J = (1 - rtS)

z
* + z

* + z«.
(5-15)

The factor (1 — ufi) in this expression is self-explanatory. The remain-

ing factor (Z4 + Z5 + Z6)/Z6 reflects the fact that the ix circuit gain does
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not vary in strict proportion to Z8 because of the presence of the other

impedances. If Z$ were very small, for example, its impedance might vary

considerably in per cent without greatly affecting /* and a corresponding

term in the sensitivity expression must therefore be included in virtue of the

fundamental definition given by equation (4^8) of the preceding chapter.

If we consider a shunt impedance such as Z4 the procedure is essentially

the same. In this case, the reference condition is a short circuit and it is

convenient to use impedances rather than admittances in the analysis.

Since the impedance which Z4 faces, however, is now reduced by feed-

back the ratio between Z4 and the impedance of the rest of the circuit is

correspondingly increased. The essential result is of the same general type

as equation (5-15).

As a third example we may consider the impedance Z2 in the /3 circuit of

Fig. 5.1. So far as the calculation of return ratio and return difference is

concerned, the situation with respect to this element is exactly the same
as it was for Zq, and we can make use of (5-15) again, with appropriate

substitution of Z\, Z2 , and Z3 for Z4 , Z5 , and Z6 . The presence of a large

direct transmission term, however, complicates the computation of sensitiv-

ity. It is simplest to begin by determining the relative sensitivity S'

.

We can evidently secure zero transmission from the amplifier as a whole by
assigning the /3 circuit a large gain equal to that of the ix circuit and a phase

which will cancel the m circuit output. The reference value for Z2 must
therefore be very nearly — (Zx + Z3 ) or, in other words, very nearly the

negative of the passive impedance which it faces. The effective impedance,

W , can therefore be taken as Z\ -\- Z2 -\- Zs . The impedance which W'
faces must be the difference, p$(Z\ + Z2 + Z3 ), between W' itself and the

total impedance calculated in equation (5-7). The relative and absolute

sensitivity are readily found from these facts, plus the relation

S'/S = W'lW, to be

S'

=

and

1 -rt?
i

rt3

1 - rf zx + z2 + z3
s =

~e z2

' (5~16)

and are obviously small in normal situations. The result is easily checked

by direct differentiation of the gain equation for the amplifier in accordance

with the fundamental definition of Chapter IV. It is interesting to notice

that the difference between the very large sensitivity represented by
equation (5-15) and the low value obtained in equation (5-16) is the result
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entirely of the difference in the two reference conditions. The situations

otherwise are exactly the same.

5.5. Effect of Feedback on Input and Output Impedances of Amplifiers

The distinction between the active and passive impedances of a feedback

circuit is particularly important in considering the effect of feedback on the

impedance which an amplifier presents to the line. The principal results,

for the basic connections described in Chapter III, can be listed as follows.

1. The active impedance of a series feedback amplifier is (1 — jit/3) times

its passive impedance. Since the input and output impedances of

tubes are normally high anyway, the active impedance is, in general,

almost infinite. A similar statement can be made for a cathode feed-

back circuit.

2. The active impedance of a shunt feedback amplifier is 1/(1 — nji)

times its passive impedance. It is thus relatively low.

3. The active impedance of a balanced bridge amplifier is the same as its

passive impedance. This connection is therefore intermediate be-

tween the series and shunt connections.

4. If the balance of the bridge in the circuit of the preceding paragraph is

disturbed by a change in the final tube impedance, the reflection

coefficient between the active impedance so obtained and the active

impedance before the change is 1/(1 — nff) times the reflection

coefficient which would be obtained if the circuit were passive, where

Up represents the loop transmission after the change is made.

The first three of these statements can be dismissed briefly. The line

impedance in a series or shunt feedback amplifier is merely a special case of

a general series or shunt impedance, the results for which have already been

given by equations (5-6) and (5-8). In the balanced bridge circuit, the

bridge balance produces conjugacy between the line and the /} circuit. It

follows from this that the loop transmission is independent of the line

impedance.* We therefore have F(0) = F(<*>) in (5-3), so that feedback

does not affect the impedance.

The fourth statement may require amplification. In the theoretical

balanced bridge connection the tube impedance is one of the arms through

which the balance is obtained. Since tube impedances are ordinarily quite

variable, the balance which can be relied upon in practice is imperfect.

Moreover, it may be necessary to shunt the tube with a dissipative branch

* This follows readily from the principle of reciprocity. See, for example, the dis-

cussion in the next chapter under the heading " Reference Feedback as a Balanced

Bridge."



74 NETWORK ANALYSIS Chap. 5

in order to secure an impedance whose phase angle and magnitude are
appropriate to produce a balance with permissible impedances in the other
arms of the bridge. This is particularly unfortunate in an output bridge
because of the wastage of output level to which it leads. The final state-

ment says in effect that if the feedback is large the departures produced in

the impedance which the amplifier presents to the line will be extremely

small even when no effort is

made to control the impedance
of the tube. Naturally, how-
ever, the other property of a
bridge circuit, that the loop

transmission is independent of

the line impedance, will no

J, I longer hold.

To/3 Circui+ This effect of feedback is

pI0. 5.2 easily demonstrated by using

(5-3) in two different ways.
Let Za

' in Fig. 5.2 represent the impedance whose removal produces
the disturbance under consideration. It will be supposed that with
Za present the bridge is perfectly balanced. Let Zd represent the line

impedance. Let Z61 and Z62 represent respectively the passive impedances
of the circuit to the right of Za when Zd has its normal value and when
Zd is replaced by a short circuit. Finally, let Zc\ and Zc2 represent respec-

tively the active impedances looking into the amplifier when Za is present
and when Za is removed by opening the terminals Pi, P2 .

The first step is the computation of the active impedance Z\ looking into

the terminals Pi, P2 when the neighboring impedance is taken as Z&i.

Let this be the Z of (5-3) and let the F's of this equation refer to the last

tube. Let the loop transmission with Za absent be represented by ai/3

so that F( oo ) = 1 — ^/J. From ordinary circuit considerations, the intro-

duction of Za changes the loop transmission to [Za/(Za + Zf,i)]nl3. More-
over, the passive impedance Z is Za + ZM . We therefore have

1 MS

z1
= (z„ + zbl )—^±J|

—

(5_17)

Now consider the impedance Z2 corresponding to Z&2 . The passive

impedance becomes Za + Zb2 . F(0) is the same as it was in developing

(5-17), since with Za present the bridge is balanced and a change in the line

impedance does not affect the feedback loop. The ratio between the loop

transmissions with Za present and Za absent is ZJiZ* + Zb2 ). We there-
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fore have

1 ^— rtS

Z2 = (Za + Zb2 )

Z
; + Z

7
bl

• (5-18)

l- Za + Zb\pZa + Zn

In this computation the F's of (5-3) have referred to the last tube. We
now apply (5-3) again with the F's taken with respect to Z<j. It follows

from (5-3) that the ratio of the return differences for Zd with Za present

and absent must be the same as the ratio of Z\ to Z2 . We can therefore

write

Zc\ + Zd

Zc i Z-,

>

ZC2 4" Zd Z2
(5-19)

or

^1

z2

~-

1

1

M|3

Zbi — Zb2

1 - Za + Zj,2

Zd(Zc2 — Zci)

Zc\ (Zc2 + Zd)

1 7., _ 7.-

(5-20)

If we set Zd = Zc\ the left-hand side of (5-20) is the reflection coefficient

between the active impedances of the network before and after the removal

of Za . On the right-hand side all the quantities except the factor 1—^/3
represent the network in its passive state. The original statement is

therefore proved.

5.6. Use of Impedance Measurements to Determine Feedback

The theorems in the first section were developed as a means of computing

the active impedance of a circuit when the return differences are known. In

practice, however, they are perhaps more frequently applied as a means of

determining the return difference from impedance measurements. This is

often a more convenient method of obtaining the return difference than a

direct transmission measurement would be, since it does not require open-

ing the feedback loop. The method can be applied even to unstable struc-

tures by including in the measurement a known impedance of a magnitude

which will stabilize the circuit.

5.7. Relation between Feedbackfor Two Elements

The process used to develop the formula for active impedances can also

be applied to obtain a theorem relating the return differences for two ele-
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ments in the circuit under actual operating conditions to the return differ-

ences which would be found for each element if the other vanished. Let the
two elements be represented by Wx andW2 . To express the fact that the

determinant of the system will depend upon both W\ andW2 , we may write

it, in general, as L{WX,W2 ). Then A(0, 2̂ ) represents the determinant
whenWx is zero, b.(Wu Q ) the determinant when W2 is zero, and A(0,0 )

the determinant when both W\ and W2 are zero.

The return difference for either element can be expressed as the ratio

of the complete determinant to the determinant obtained when that ele-

ment vanishes. Letting Fx and F2 be the return differences for Wx andW2 , respectively, these relations, in our present notation, are

A(^,/F2 )

Fx = A(0 â )

'

(5-21;

(5-22)

= A(WUW2 )
2

A(/^,0)
'

or

F\ = A(fru 0) _ A(^,0) A(0,0)_

F2 A(0,/F2 ) A(0,0) A(0,/F2 )

_ F1 (W2 = 0)

F2{WX
= 0)'

Equation (5-22) is evidently unaffected if the W's are assigned any
reference values, as long as the reference values are taken as the same on
both sides of the equation. We can therefore state the

Theorem: The ratio between the actual return differences for any two
elements, for any reference conditions, is the same as the
ratio which would be obtained if the return difference for

each element were computed with the other element at its

reference value.

As an example, we may take Wx as Y6 in Fig. 5.1 and W2 as
the transconductance of one of the tubes. We see by inspection that
F*<W\ = 0) = 1 and F1 {JV2 = 0) = (Z4 + Z5 + Z6)/Z6 . The theorem
states that the ratio between these two F's will be preserved for any values
of the PF's. This is, of course, verified by equation (5-15).

5.8. Thivenin's Theorem in Active Circuits

The general formula for return difference also can be used to develop
another type of identity which is even simpler than those described previ-
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ously. Let it be supposed, for example, that W represents the transimmit-

tance of the tube whose grid and plate are labeled respectively i and j.

W must be a constituent of Zji or Yjt in the general determinant. The
return difference forW can be written, from (4-2), Chapter IV, as

A A As-,-F= __i^,
(5_23)

A Aki A v

where A represents A when W = and k is any other node or mesh in the

circuit.

In equation (5-23) the determinant Am can equally well be written as

A^i since it contains no terms from the z'th column of the original determi-

nant and is therefore independent of W. The ratios Aki/A and Afcf/A are

thus the transmissions* from k to / when Wha.s its normal value and when

W vanishes. Moreover, the identity evidently holds equally well if we
use any arbitrary value instead of zero as a reference for W. We can there-

fore draw the following conclusion

:

Theorem: The ratio between the transmissions from any point of the

network to the grid of a given tube for an arbitrarily chosen

reference condition and for the normal operating condition

is equal to the return difference of the tube for the chosen

reference.

A simple example is furnished by the transmission from the input line to

the n circuit of an ordinary amplifier. The effective signal level on the grid

of any tube is 1/(1 — juj3) times the level which would exist if that tube

were dead.

We can also write the return difference equation as

A A Ailr
F = -o = £•

(5
-24 )A Ajk A v '

The quantities Ajk/A and Ajk/

A

evidently represent transmissions from

the plate to k under normal and reference conditions. We therefore have

the

Theorem: The ratio between the transmissions from the plate of a

given tube to any point of the network for an arbitrarily

chosen reference condition and for the normal operating

condition is equal to the return difference of the tube for

the chosen reference.

This is best exemplified by the discussion of the following sections.

* " Transmission " is used here as an abbreviation for transfer admittance in a mesh

analysis or transfer impedance in a nodal analysis.
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If W is a bilateral element the situation is essentially the same except
that no distinction need be made between the " grid " and " plate " ends
of W. We therefore have the

Theorem: The ratio between the transmissions from a given bilateral

element to any point in the network, or vice versa, for an

arbitrarily chosen reference condition and for the normal
operating condition is equal to the return difference of the

given element for the chosen reference.

The last theorem gives a clue to the characterization of the three theo-

rems as a whole. IfW is a bilateral element the return difference for W
corresponding to any given reference is the ratio of the total immittances

seen from W when W has its normal and reference values. But the state-

ment that this is the same as the ratio of the transmissions from k to W
under the two conditions is merely another way of expressing Thevenin's

theorem.* On this account the group of three theorems on the relation

between return difference and transmission will be described as the general-

ized Thevenin's theorem, applicable to unilateral as well as bilateral elements.

In other words the return difference for a unilateral element plays the same
role in determining the final response that the impedance relations at

generator or receiver terminals would play in an ordinary transmission

calculation.

5.9. Computation ofW
As an example of these theorems we will consider the determination of

the referenceW for one of the tubes in the circuit. It will be recalled that

JVq is the value which W must assume in order to provide zero trans-

mission through the complete structure. An equation for PF has already

been given by (4-23) of the previous chapter but the A's which appear in it

are not easily recognized as quantities which could be determined by
physical measurement. With the help of the generalized Thevenin's
theorem of the preceding section it is possible to develop an alternative

formula for W involving quantities of more direct physical significance.

Let the input and output of the circuit as a whole and the grid and plate

of the tube W be labeled respectively 1, 2, 3, and 4. The quantities

Ti = A?2/A°, 72 = A13/A°, y3 = A42/A , and 74 = A43/A° represent

respectively the transmissions from input to output, from input to grid,

from plate to output, and from plate to grid, all evaluated on the assump-

* Thevenin's theorem is discussed in most books on communication circuits. See,

e.g., Shea, " Transmission Networks and Wave Filters," p. 55, or Terman, " Radio
Engineer's Handbook," p. 198.
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tion that the tube is dead. It will be supposed that all these transmissions

are known.

If we begin with the tube dead, the excitation on the grid for a unit source

in the input will be 72. The fact that the tube has the residual gain W
in the reference condition can therefore be represented by inserting an

equivalent generator —W y2 in the plate circuit.* If this generator were

actually an independent source of current or voltage it would evidently pro-

duce the response —#7
o7273 in the output. The reference condition could

then be established by finding what value ofWo would lead to exact cancel-

lation between this response and the direct transmission yi. But the

introduction of the equivalent generator coincides with a change in tube

gain from zero to JV$. In accordance with the theorems of the preceding

section, this must reduce the transmission from plate to output by a factor

equal to the return difference of the tube when W — TV$. This last

quantity can be found from a knowledge of the transmission 74 from plate

to grid. The correct relation is thus easily seen to be

^07273

1 + #"o74
= 7i, (5-25)

JFa = -
> (5-26)

7273 — 7i74

in which all the quantities can be measured directly. The fact that this is

actually the same as the original formula for Wq can be established by means

of equation (4-13) of the preceding chapter.

5.10. Reduction of Distortion by Feedback

One of the principal practical advantages of feedback is the fact that its

use reduces the flow of modulation currents in the load due to the non-

linear distortion of the elements in the fi circuit. In order to investigate

this, let it be assumed that the non-linear distortion is represented by the

addition of a separate " distortion generator " in the plate circuit of the

distorting tube, while the circuit itself remains linear. This supposes that

the level of the fundamental components of the signal has been established

in advance, so that the amount of non-linear distortion can be calculated,

and also that the distortion is a small part of the signal, so that second order

effects representing " distortion of the distortion " can be ignored. The
distortion generator may also be used to represent a source of extraneous

noise rather than a source of modulation products.

* The negative sign is due to the phase reversal in the tube.
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An appropriate relation can be developed immediately from the generali-

zation of Thevenin's theorem described previously. It is merely necessary

to choose the point k to represent the output circuit. The second of the

preceding three theorems can then be restated as the

Theorem: The noise or distortion current in the output produced by a

prescribed distortion generator in one of the elements of the

circuit is equal to the current which would be found with

the element in an arbitrarily chosen reference condition

divided by the return difference of the element for the chosen

reference.

But, if we deal only with the portion of the output current which flows

because the given element is activated, the return difference is also a measure
of the sensitivity of the circuit to variations in the linear properties of the

given element. It thus appears that the contributions of the given element

to the distortion and to the fundamental frequency currents in the output
are governed by the same laws. This is not surprising if it is recalled

that a slight change in the linear properties of a circuit can be represented

by the introduction of a small generator at the disturbed point.* The
circuit must naturally have the same properties whether the generator

represents distortion or a change in the linear characteristics of the circuit.

5.11. Exact Formula for External Gain with Feedback

The relation between feedback and external gain is customarily expressed

by the statement that the gain is reduced by the amount of feedback.

Equation (3-4) of Chapter III, for example, gives this result for the simple

analysis in terms of independent /* and /? circuits.

If we wish to make very precise gain calculations, this statement suffers

from two objections. The first is that the meaning of gain in the absence

of feedback is somewhat uncertain, on account of the interaction between
the impedances of the /x and /S circuits at the ends of the amplifier. It is not

perfectly clear whether we should simply remove the feedback circuit

entirely in making the calculation of gain before feedback, or whether we
should make some allowance for the energy absorption of the ft circuit

elements at input and output, and if so, what that allowance should be.

The second difficulty is the fact that the relation between gain and feedback
was developed only for the conventional single loop amplifier. It is not

clear how the relation should be applied to other situations, and in particu-

lar to situations in which there is an appreciable direct transmission term.

As a final example of the methods established in Chapter IV, therefore, we

* See the " Compensation Theorem," in Shea, p. 56, or Terman, loc. cit., p. 198.
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will develop an exact expression for the external gain in the presence of

feedback.

It is convenient to begin with equation (4-21) of Chapter IV. If we
multiply and divide by A , this equation can be written as

'
A + WAtz A A

B P ;

The quantity A / (A + /FA43 ) in this expression will be recognized as the

reciprocal of the return difference F. If we replace the remaining terms by

e$F, the expression as a whole becomes

e» - /" = -L"f, (5-28)
F

while if we make use of (4-22), Chapter IV, the equation can also be

written as

e
6 = y2 e

eF- (5-29)

The quantity e
Bp

will be called the.fractionated gain. It may be regarded

as an exact statement of what is meant by " gain before feedback." We
notice that it is essentially the product of three factors. Two of them,

A13/A and (A42/A°)£P/e, represent, respectively, the transmission from the

input to the grid and from the plate to the output with the tube dead.

They thus include the input and output impedances of the /3 circuit just as

it stands. The third is the gainW oi the tube itself. In a single loop struc-

ture the fractionated gain is then the gain which would be realized if it were

possible to open the /? circuit without affecting its impedance at either end.

An example is furnished by the circuit of Fig. 4.5 in the preceding chapter.

If this structure is taken as a complete amplifier, the fractionated gain is

readily computed to be

/' = ^ ^ Z5W,
Z3 (Z4 + Z5 ) (Zt +Z2)Z3

Zl + Z2 + z3 + z4 + z5 z1 + z2 + Z3
+ Z4 + Z5

(5-30)

where Z5 on the right-hand side is identified withWR in the general expres-

sion (5-27) and the two preceding factors will be recognized as the input-

grid and plate-output transmissions, A13/A° and A43/A°, for this particular

structure.

Equations (5-28) and (5-29) offer alternative ways of treating the gain

reduction due to feedback in systems with appreciable direct transmission.
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In equation (5-28), the gain reduction is applied only to the surplus of the

total output over the direct transmission term. This is the most natural

relation if we continue to think of the system as made up of two non-

interacting paths in parallel, one of which is simply a fixed structure fur-

nishing the over-all direct transmission, while the other contains the vari-

able W and exhibits the essential phenomena of feedback. Equation

(5-29) shows, however, that it is also permissible to apply the gain

reduction due to feedback to the complete output provided we take " feed-

back " to be F2
/ S.

Equation (5-27) can be regarded as a relation which is appropriate if we
wish to give special attention to the reference condition W = 0. The
quantities e

6
° and A evidently apply to this state. Just as with most of

the other equations in this chapter, however, an analogous expression can

be developed for any reference. The use of the reference Wq is of particular

interest, since it leads to an alternative " gain before feedback " expression

based upon measurements made with an interrupted feedback path. This

is discussed in the next chapter.



CHAPTER VI

General Theorems for Feedback Circuits— B

6.1. Introduction

This chapter will continue the development of general feedback theorems

begun in the preceding chapter. The center of attention in the present

chapter, however, is the relative sensitivity, S', and its use in expediting

feedback and gain calculations. A large part of the discussion is concerned

with multiple loop circuits, where the conception of relative sensitivity is

most useful. The chapter can be omitted by readers interested only in

simple feedback circuits.

6.2. Reference Feedback as a Balanced Bridge

In ordinary circuit calculations we frequently encounter a condition of

bridge balance between two branches by means of which transmission

calculations can be considerably simplified

even when the transmission is not taken di-

rectly between the two branches in question.

As an example we may consider the calcula-

tion of the current which would flow in

branchF of Fig. 6.1 as a consequence of a

generator in branch A under the assumption

that branches B and F are conjugate. Such

a problem might be encountered, for example, pIG 6 j

in connection with the design of a constant R
equalizer structure. Since A and B are not conjugate and current must
flow in B as a result of the generator in A, it might appear at first sight that

the conjugacy condition allows no simplification in computing transmission

from A to F. It follows from the principle of reciprocity,* however, that

the current flowing in F as a result of the generator in A must be equal to

the current which would flow in A when the generator is inserted in F.

When the generator is inserted in F, however, no current can flow in B and
we can consequently choose any value we like for this impedance without
affecting the result. Obviously convenient values of B are zero and
infinity, since with either one the circuit is reduced to a simple series-shunt

* See Shea or Terman, loc. cit., pp. 52 and 198, respectively, or Guillemin "Com-
munication Networks," Vol. I, p. 152.

83
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configuration which is readily computed. A third convenient value for B
is that one which balances the bridge composed of branches B, C, E, and F.

This allows us to omit D, if we assume that the generator is in A, so that

we can again reduce the structure to a simple series-shunt network.

In a broad sense computations on a feedback circuit in its reference con-

dition present an analogous situation. Evidently, the reference, since it

demands zero output current for any input generator, is somewhat similar

to a bridge balance between input and output. Since the principle of

reciprocity breaks down in circuits containing unilateral elements, we can-

not use as simple a device as was suggested in connection with Fig. 6.1 in

exploiting this possibility. This complicates the analysis without essen-

tially affecting the results, however. We will find that in a number of sub-

sequent theorems computations in the reference condition can be made
with arbitrary choices of the impedances in the input and output circuits.

The choice of an impedance which will simplify the calculation then becomes
principally a matter of ingenuity.

6.3. Return Difference and Relative Sensitivity

The simplest illustrations of these possibilities are furnished by a set of
relations between the return difference, the sensitivity, and the trans-

mission from input to grid and output to plate terminals of the tube in

question. «As in Chapter IV, let 1, 2, 3, and 4 denote, respectively, the

input, output, grid and plate. Then from (4-2) and (4-26) of Chapter IV
we can write

(6-1)

where, as before, the superscripts ° and ' indicate that the determinants to

which they are attached are to be evaluated with W = and W = 0,

respectively. We observe that the determinant A13 in (6-1 ) is independent

of W and might equally well be written as A?3 or Aj3 . Thus the factor

A13/

A

in (6-1 ) is the transmission from input to grid with the tube dead,

while the factor A'/A13 is the reciprocal of the transmission between the

same points when the tube is in its reference condition. If we begin by
multiplying and dividing F/S' by A42 , instead of Ai3 , we can also obtain an

analogous expression involving the transmissions from plate to output for

these two values of W.
The principal difficulty with these expressions as they stand is the fact

that the input to grid or plate to output transmission in the reference state

cannot be calculated without allowing for the residual feedback which

A

F A5 A' A13 A'

S'~~
" A

~

A7

A
0_

A A13
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exists because the residual transimmittance W remains in the tube For

most circuits, however, the idea of bridge balance between input and out-

put in the reference condition allows the problem to be much simplified.

Since the balance cannot depend upon the input and output impedances,

we can study the input to grid transmission for an arbitrary value of the

impedance connected to the output terminals, or the plate to output trans-

mission for an arbitrary value of the input impedance. By choosing the

proper values in each case it is generally* possible to interrupt the residual

feedback path.

These possibilities are reasonably obvious physically, but it will simplify

later analysis if we also verify them mathematically. To represent the

effect of a change in the output line upon the input to grid transmission in

the reference condition, then, we can rewrite (6-1) as

F_ _ A13 A' + PF2A'22

S' A A^-f-^A^/ {b~Z)

where J¥2 is an arbitrary immittance added at the output terminals when
the tube is in the reference condition. But we can also write

A'A^ = A( 3A22 , (6-3)

from the general identity (4-13), Chapter IV, if we recall that A[2 = 0,

since there is zero transmission from input to output in the reference state.

It follows from (6-3) that (6-2) is independent of W2 , so that we can

choose any value we like for this quantity without vitiating the original

relationship between S' and F given by (6-1). In particular, then, we
may give JV2 a value which will interrupt the return path from plate to

grid, or in other words will make A43 = 0. With this choice the second

factor of (6-2) becomes independent of W0y so that we are at liberty to

suppose that the tube is dead rather than that it is in its reference condition.

We can therefore state the following

Theorem: The ratio between the return difference and the relative

sensitivity for any tube is equal to the ratio between the

transmission from the input circuit to the grid of the tube

when the output impedance has its normal value and the

transmission between the same two points when the

output impedance is assigned the value which interrupts

the return path from the plate to the grid of the tube, if the

tube itself is dead in both cases.

* That is, in the absence of some such special situation as that represented by the

bridge-type feedback amplifiers described in Chapter III, in which the loop trans-

mission is independent of the input and output line impedances.
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If the transmission path is taken from plate to output the analysis is

precisely similar and we have the

Theorem: The ratio between the return difference and the relative

sensitivity for any tube is equal to the ratio between the

transmission from its plate to the output circuit when the

input circuit has its normal value and the transmission

between the same points when the input circuit is assigned

the value which interrupts the return path from the plate

to the grid of the tube, if the tube itself is dead in both cases.

Simple illustrations of these theorems are furnished by ordinary single

loop amplifiers. Ifwe apply the first theorem to a series feedback amplifier,

for example, the interruption of the return path is accomplished by open-

circuiting the output line. This evidently produces a slight change in the

input impedance of the j3 circuit, which would otherwise be terminated by
the output line impedance in series with the output impedance of the fi

circuit. Since the input line, the input of the fi circuit, and the input

impedance of the /? circuit are all in series at the input terminals, there is a

corresponding slight change in the transmission from the input line to the

M circuit. In a shunt feedback structure the situation is similar except that

the interruption in the return path is produced by short-circuiting the out-

put terminals. In either instance, of course, the change in transmission is

small in any ordinary application.

A more specific example can be obtained by returning to the structure

shown by Fig. 4.5, in Chapter IV. If we use the first theorem, the interrup-

tion of the return path is accomplished by open-circuiting Z5. For either

the open-circuit or the normal value of Zs , however, the transmission from

a generator in series with Zi to the grid is inversely proportional to the

impedance seen from the generator terminals. We can therefore write by
inspection

L = Zt + Z2 + Z3

S' 7^7^ Z3(Z,+Z5 )
'

{b~^)

Z3 + Zi + Z5

6.4. External Gain with Feedback

It was suggested at the end of the last chapter that gain expressions

analogous to the ones given there could be developed by starting with any

reference for the variable element W. If we begin, in particular, with the

reference W , we are led to formulae involving considerations very similar

to those we have just discussed.

The appropriate gain equation for calculations based on the reference JVq
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is easily written from analogy with (5-27) of the preceding chapter. It is

. 1 -W'A13A42

'
= 7 A'A' ~~

Wr > (<HJ)

or

e6 =y (6-6)

if e9 is written in place of the last group of factors in (6-5). The validity

of (6-5) can be verified by direct calculation from equations (4-25) and
(4-28) of Chapter IV, if we make use of the condition A'aJ243 = — AJ3A42,
which follows from an argument similar to that used for (6-3) in the
present chapter. In view of the various relations among S, S', and F
which were developed in the last section and in Chapter IV it is also possi-

ble to write (6-5) and (6-6) in a variety of other obvious ways.
If we confine our attention to equations (6-5) and (6-6) as they stand,

we are concerned principally with the quantity #'* This is evidently a
fractionated gain expression very similar to the original fractionated gain
e
e* which appeared in Chapter V, except that each of the three transmission
factors of which it is composed is calculated with respect to the condition

W = WQ rather than with respect to the conditionW = 0. As in the pre-
ceding section, the input and output transmission factors A13/A' and
A42/A' can be calculated with an arbitrary value for the line impedance
not directly involved in the transmission path. If we choose in particular

the values which interrupt the return path, the calculations can be made
with the tube dead. Thus the difference between these factors and those
appearing in e

e" is that at each end they include the circuit impedance as
it would appear with the feedback loop interrupted at the other end, rather
than as it would appear for the circuit connections as they stand.

A simple example is furnished by the series feedback amplifier shown by
Fig. 4.5 of Chapter IV, which we used previously to illustrate the calcula-

tion of fractionated gain in the zero reference case. Evidently, the trans-
mission from Zx to the grid in this structure is most easily evaluated if we
suppose thatZs is infinite and the transmission from plate to Z5 ifwe assume
Zx to be infinite. The fractionated gain for the reference W can, there-
fore, be written down as

Z5W. (6-7)zx +z2 + z3 z3 + z4 + z.5

This may be compared with equation (5-30) of the preceding chapter.
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6.5. Simplified Computation of Wq
The material of the previous sections has been chosen principally to

provide the simplest possible illustrations of the use of the bridge balance

condition when the analysis, as a whole, is based upon the reference W .

It is somewhat misleading, however, in the sense that we are, in fact, likely

to choose Wo rather than zero for the reference only if a relatively elaborate

computation is to be attempted. The reason is apparent if we notice that

the analysis in terms of W§ depends essentially upon the variables W' and
S , which are obviously more difficult to evaluate than are the correspond-

ing variablesW and F in the zero reference analysis. Thus, the use of the

reference W calls for an initial investment in labor not required with the

other procedure. On the other hand, it leads in general to simpler rela-

tions. For example, (6-7) is simpler than its zero reference counterpart,

and the simplification is enhanced if we include the fact that (6-7) can be

applied directly to find the final output, while with the zero reference method
it is still necessary to compute the direct transmission. We also need to

know the direct transmission to find the absolute sensitivity in the zero

reference case, whereas equation (4-31) of Chapter IV gives S directly ifwe
begin with W' and 6"

. In general, it appears that these advantages should

outweigh the extra difficulty of determining W' and S' initially if the circuit

is complicated or if a long series of results is to be obtained, but the zero

reference analysis is probably more advantageous in elementary situations.

Since the computation in terms of W§ hinges primarily upon W' and S',

it is of considerable interest to consider how these variables can best be

evaluated. JV', of course, depends directly upon Wq. S' can be deter-

mined indirectly from F by the methods described earlier in this chapter

and in Chapter IV. This, however, involves the intermediate step of

computing F. If we wish to determine S' directly, we are concerned, in

general, with the backward transmission from plate to grid in the reference

condition, since it was shown earlier that S' is equal to the return difference

for the reference W .

Fortunately, the computation both of WQ and of the backward trans-

mission in the reference state can be simplified by means of the bridge

balance condition we have already discussed. The situation is particularly

favorable if the circuit belongs broadly to any one of the general types

illustrated by Figs. 6.2, 6.3, 6.4, and 6.5. In each figure the networks Ni
and N2 are arbitrary, but it will be seen that the relations between either

the source and the grid or the plate and the load are particularly simple.

For example, in Fig. 6.2, the plate and the load are " effectively in parallel
"

in the sense that if the plate-cathode impedance is a short circuit, there can

be no transmission between either the input or the grid and the load.

Similarly, Fig. 6.3 represents a series arrangement for the plate and load,
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while Figs. 6.4 and 6.5 give analogous relations between the input and the

grid. The circuit need belong only " broadly " to one of these classes since

minor departures will not seriously affect the results. For example, there

may be other paths between input and output in addition to those shown

by the figures, provided the transmission through these paths by them-

selves is relatively small, since Chapter IV shows that the distinction

between S' and S or F depends only upon the ratio of e
6
" to e

e
.

Input

Fig. 6.2 Fig. 6.3

Output

Inputc 1*1 »2

\s~\-^
r̂

Output

Input < W
2 > Output

Fig. 6.4 Fig. 6.5

This section will deal only with the computation of W§. If we consider

in particular the circuit of Fig. 6.2, we notice that since no voltages can

exist in the output in the reference condition, no voltage difference can

exist across terminals AA' either. We can therefore determine the refer-

ence condition equally well if we begin by short-circuiting these terminals,

provided we define the reference condition as that one which gives zero

current through the short-circuit. This evidently demands cancellation

between the current which would be supplied to the short-circuit by the

rest of the network with the tube dead and the current supplied directly by

the tube. In evaluating the latter, however, we need make no allowance

for residual " feedback " since the short-circuit destroys the return path.

The reference transconductance of the tube for the circuit of Fig. 6.2 is

therefore equal to the ratio of the current flowing between A and A to the

voltage between grid and cathode, both quantities being evaluated with

AA' short-circuited and the tube dead. It will be noticed that this requires

a knowledge of only two transmissions, in comparison with the four appear-

ing in (5-26) of the previous chapter.

A simple example is furnished by the structure of Fig. 6.6. Obviously a

voltage Eg between grid and cathode will deliver a current YzEQ to a short-

circuit between plate and cathode when the tube is inactive. We therefore
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have at once

TVo (6-8)

A structure belonging to the general class of Fig. 6.3 can be analyzed in a
similar fashion if we replace the short-circuit between A and A' by an
open-circuit between B and B'. The reference transimpedance is equal to

Fig. 6.6 Fig. 6.7

the ratio between the voltage across BB' and the current in the grid circuity

both quantities being evaluated with BB' open-circuited and the tube dead.

For example, in the structure of Fig. 6.7 we have

WQ = Z3 . (6-9)

We may also continue to specify the reference condition in Fig. 6.7 in terms
of admittances. Thus if we begin with any voltage between grid and
cathode in that figure and compute directly the transconductance which will

give a balance between the voltages across Z3 and Z4 , with Z5 open, we
readily find that W§, as a transconductance, is given by

r» = yy' (6-10)

In a circuit belonging to the general class shown by Fig. 6.4 the interrup-

tion of the residual feedback path can be accomplished by supposing that a

voltage generator, of zero internal impedance, is applied between grid and
cathode, while in Fig. 6.S we may assume that the circuit includes a current

generator, of infinite impedance, in series with the grid lead. The reference

transimmittance is equal to the ratio between a current or voltage source in

the plate circuit and this voltage or current source in the grid circuit, when
the plate and grid sources are adjusted to produce the same response in the

output with the tube dead. These relations can be exemplified by using

the structures of Figs. 6.6 and 6.7 again, and lead to the results we have
already found in (6-8) and (6-9).

Although these results are physically obvious it will simplify the dis-

cussion in the next section to show how they can be demonstrated mathe-
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matically. We will consider in particular the structure of Fig. 6.2. It is

convenient in this structure to use a nodal analysis, with the cathode of the

tube on ground. In agreement with our earlier conventions, the input,

output, grid, and plate will be taken as, respectively, the first, second,

third, and fourth nodes. The short-circuit between A and A' will be repre-

sented by adding the arbitrarily large quantity Y4 to the self-admittance

of the fourth node.

In terms of this notation, the voltage on the grid and plate corresponding

to a unit source applied to the input with the tube dead can be written as

A?3 + F4A1344
£s = a° + y4a44

' (6~n)

and

E
> ~ 1F&X <6-' 2)

where A represents the system with the tube dead and Y4 = 0.

The current in Y4 is £4Y4 . The statement to be established is that the

reference transconductance of the tube is equal to the ratio of this current

to the grid voltage E3 when Y4 becomes infinite. A general formula for

the reference is, however, given by (4-23 ) of Chapter IV. Upon inspecting

(6-11) and (6-12) to find the current-voltage ratio when Y4 becomes infin-

ite we therefore obtain the required relation in the form

^14 A?2
(^13)

Ai344 A1243

To prove this equation, let the voltage on the output node be written as

A°2 + Y4A1244
j*2 A°+Y4A44

When y4 becomes infinite, however, the configuration in Fig. 6.2 is such

that E2 vanishes. We must therefore have A1244 = 0. Upon identifying

Ai244 with AabyCd in (4-13), Chapter IV, this gives

A?2A44 = A14A42 . (6-15)

The result (6-13) follows readily from (6-15) if we use (4-13) of Chap-

ter IV again to replace A1344 and A1243 by their values in terms of first

order minors.

6.6. Simplified Computation of Transmission from Plate to Grid

The fact that the input and output must be conjugate in the reference

condition, which we have just used to simplify the computation of the
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referenceW itself, can also be applied to the computation of the plate-grid
transmission whenW = JV . This can be illustrated by an examination of
Fig. 6.2. For example, it follows from the conjugacy condition that the
impedance looking to the left from terminals AA' in Fig. 6.2 must be inde-
pendent of the input circuit when W = WQ . Otherwise, if we were to
vary the input circuit, we would expect to find a varying impedance across
AA for a prescribed plate generator and consequently a varying current
in the output circuit. Since a variation in the input impedance can be
represented by keeping the input impedance constant and adding a suit-
able generator in series with it, this is impossible by the conjugacy condi-
tion. Similarly, once the current gets over to the input impedance and the
associated elements in Nu the way in which it divides in the various meshes
of Ni must be independent of the output impedance. We can therefore
divide the total transmission between plate and grid in the reference con-
dition into two factors, one of which depends broadly upon the load imped-
ance and upon the elements ofN2 , but is independent of the input imped-
ance, and another which depends upon the input impedance and the ele-
ments of A7

!, but is independent of the output.
These relations may be expressed by the following

Theorem: If the structure is in any one of the forms shown by Figs.

6.2, 6.3, 6.4, or 6.5 the actual circuit used in computing the
transmission between plate and grid in the reference con-
dition can be replaced by an equivalent circuit in which the
output impedance is assigned an arbitrary value, provided
the strength of the energizing source in the equivalent cir-
cuit is so chosen with respect to the source in the original
circuit that they give the same voltages on the input side of
the tube for any one arbitrarily chosen value for the imped-
ance of the amplifier input circuit.

The equivalent source may be associated either with the plate circuit or
with the load and the comparison of voltages may be made either at the
grid itself or at the input circuit terminals. In the application of the
theorem, of course, one would attempt to choose the output impedance in
a way to facilitate the final computation of feedback, while the input
impedance would be chosen to facilitate the intermediate step of comparing
the voltages.

The notation of the preceding section will be retained in the proof of the
theorem. The fact that the output circuit is arbitrary in the equivalent
structure will be represented by adding the arbitrary quantity Y2 to the
Self-admittance yZ2 , while the arbitrary input mesh assumed in the voltage
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comparison will similarly be represented by the addition of Y\ to Y\\*
Let I4 represent the actual plate source and I2 the equivalent source,

while £1 is the voltage which each produces across the input. When the

voltage comparison is made, we have

and

A21
El = h

A' + Y1 A'n + Y2A'22 + Y,Y2A'1122
' (6~1?)

where A' is the determinant of the actual circuit when Yj = Y2 = and

W = TVq. In accordance with the conditions of the theorem I2 must be so

chosen with respect to I4 that the Ei's determined by the two equations

are equal.

On the other hand, when the input circuit is assigned its actual admit-

tance value, the equivalent source I2 will produce a voltage between grid

and cathode given by

Z'-'-Yrkz; (W8)

If we replace I2 by its value in terms of 74 as determined from equa-

tions (6-16) and (6—17) this can also be written as

W - T
AilA*3 A

'
{A ' + FlA" + Y**** + ^^122) /A_1<nA3 - i4

A'A21 (A' + Y1 A'11 )(A' + Y2A22 )

' ^^
It follows from (4-13), Chapter IV, however, that

A'Aj 122 = AdA22 , (6-20)

if we recall that, since there can be no transmission from input to output in

the reference condition, we can set A(2 = 0.

With the help of (6-20), it is readily seen that the second factor of

(6-19) must be equal to unity. This equation therefore reduces to

*a = /4^- (6-21)
a a2 i

* With corresponding changes in wording, if we use an impedance rather than an

admittance analysis. As in the preceding section, it is assumed as a matter of simplic-

ity that the input, output, and cathode are all grounded, so that changes, for example,

in the input and output affect only a self-admittance term.
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But the transmission from plate to grid for the actual circuit is given by

E3 = I4 -^- (6-22)

The theorem is therefore demonstrated provided we can assume that

A41A03

^43^21

The final step is to establish the fact that (6-23) holds for any structure
of the general type illustrated by Figs. 6.2 to 6.5. It is sufficient to examine
Fig. 6.2. From an argument similar to that used to establish equation
(6-15) it is clear that A2 i44 = A2344 = for this structure. Correspond-
ing to (6-15) itself we must therefore have

A21A44 = A24A41 , (6-24)

and

A23A44 = A24A43, (6-25)

from which (6-23) follows by direct division.

The proof of (6-23) for the other configurations can be made by the same
methods. We may also notice that although (6-23) was established on the

assumption that the equivalent source was associated with the output and
that the voltage comparison was made at the input, it would also have been
obtained if we had introduced the equivalent source in the plate and com-
pared the two voltages at the grid, so that the theorem holds for this con-
dition also.

As a simple example of the theorem, we may consider the structure

previously shown by Fig. 6.7. Zx in this figure will be taken to represent
the input circuit and Z5 to represent the load. For the equivalent source,

it is convenient to suppose that Z5 = 00 , since this removes all the plate

side elements from the computation. In making the voltage comparison,
on the other hand, it will be supposed that Z\ = 00 since this allows us to

ignore the grid elements. If the original plate current source is 74 , the

voltage across Z3 (or across Z\) for the comparison condition is given by
74[Z3Z4/(Z3 + Z4 -f- Z5 )]. The equivalent source must of course be
adjusted to give this same voltage across Z3 . The equivalent source, how-
ever, corresponds to an open plate circuit. When we restore the input
impedance to make the actual measurement, therefore, we find that a
fraction Z2/(Zi + Z2 + Z3 ) of the voltage which it would produce across
Z3 in the comparison condition must appear between grid and cathode. If

we include also the factor W' to give complete loop transmission, therefore,
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the return ratio for the reference W§ can be written as

Z2 Z4
T' =

Z\ + z2 + z3 Z3 + Z4 + Z5
Z3

^'. (6-26)

Equation (6-26) is evidently the expression for the return voltage which

would be deduced by inspection upon the assumption that Z3 is so small

compared to the other impedances that there is no interaction between the

two ends of the network. The choice of the reference value W$ is equiva-

Ftg. 6.8

lent in effect to destroying the interaction between input and output, so

that in terms of this reference value the equation becomes an exact expres-

sion for T' even when Z3 is not small. In other words, in the reference con-

dition the two forward couplings represented by Z3 and the transconduct-

ance of the tube cancel one another. The transmission backward from

plate to grid is therefore unilateral and the two ends of the network are

independent of one another in exactly the same way that the plate circuit

and grid circuit of an ideal vacuum tube are independent.

6.7. Amplifier with Local Feedback— Computation of JV

These various theorems will be exemplified by means of the structure

shown in Fig. 6.8. The circuit is a multiple loop amplifier of the general

type illustrated by Figs. 3.14 and 3.15 of Chapter III. The main feedback

is provided by the branch Ys . The last tube is provided with additional

local feedback by means of branches Y3 and Y6 . This stage is evidently

similar to the structures which we have already analyzed, as complete

amplifiers rather than as constituents of a multiple loop circuit, in connec-

tion with Figs. 6.6 and 6.7 of the present chapter.

Although the analysis does not depend upon any particular assumption

concerning the elements, we may conveniently suppose that Y6 is a para-

sitic grid plate capacity and that Y3 is a physical element deliberately

added to enhance the total feedback on the tube. Y2 and Yi are intro-



96 NETWORK ANALYSIS Chap. 6

duced to represent the fact that in a physical tube a portion of the total
grid and plate admittances must be considered as going directly to the
cathode and this portion must be distinguished from the portion which goes
to ground when the cathode is off ground, as it is in this case. Fx and Y5
represent normal parasitic capacities and design elements connected to
ground while Y7 is used to represent the total output admittance.
The presence of both Y3 and Y6 does not appreciably complicate the

structure in theory, but it leads to considerably more complicated circuit

equations, principally because the circuit with both elements present is

essentially a bridge rather than a series-shunt configuration. In order to
simplify the discussion, therefore, each stage of the analysis will be begun

on the assumption that only one of these two ele-

ments is present and the complete equation will be
supplied only as a final step.

Since the properties of the circuit for the first and
second tubes are similar to those which would be
found in a single loop amplifier, we can turn im-
mediately to the output stage. The first step is to

determine the reference value W for the transcon-

ductance. Since no current can flow in the output

Fl0 6 9
circuit for the reference condition, we can sup-
pose that Y7 is removed and the fundamental con-

dition then becomes that the sum of the voltages across Y8 and Y5 must
vanish. The voltage across Y8 , however, is obviously very small and will

be neglected also. The circuit is thus reduced to the form shown by Fig.

6.9 and the problem becomes that of determining a transconductance W
such that there is zero transmission from A to B.

It follows from the discussion early in this chapter thatW must be inde-
pendent of Y1 and Y5 , so that any convenient values for these admittances
can be assumed in making the computation. If one of the branches 3 or 6
is missing the structure reduces to one of the types shown by Figs. 6.6 and
6.7, for which the reference transconductance has already been calculated
by equations (6-8) and (6-10). With suitable changes in notation to agree
with Fig. 6.9 the results may be reproduced here as

^o =
^fp> (6-27)

if Y6 vanishes, and

ffo = Y6, (6-28)

if Y3 is infinite.

In the general case, when neither Y3 nor Y6 can be ignored, we can con-
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tinue to determine W from a transmission computation, using arbitrary

values of Y\ and Ys . A convenient choice is now Y5 = and Yx
= — Y3 .

This choice interrupts the return path from plate to grid, so that the net

output voltage, which must be set equal to zero, can be calculated by simple

superposition of the voltage due to the original source and the voltage due
to the flow of plate current. With the tube dead, and these values for Yx

and Y5 , it is easy to calculate that a current source IA applied to node A
in Fig. 6.9 will produce the voltage

£*i
= ~ v*,J\v^ (

Y*Y* + Y*Y* + Y*Y*+ F^e) (6-29)

from node B to ground, that is, across Y5 . The grid-cathode voltage pro-

duced by the same energizing current is —IA/Y3 . Allowing for the phase
reversal in the tube, the corresponding plate current in the reference con-

dition is IAW /Y3 . When this current source is applied to the network,

again with the tube dead and the chosen values inserted for Yj and Ys , the

resulting voltage drop across Y^ is

-. lAtr 1 A Y6\

^-^TivFnV 1 -^)- (6~30)

But the sum of the two voltages in (6-29) and (6-30) must be zero. The
correct value of W§ is consequently

w Y*Y« + Y*Y« + Y*Y* + YsY°
tr = , (6-31)

* a — ^6

from which (6-27) and (6-28) follow as special cases.

It is also possible, on the other hand, to determine PF directly from the

nodal equations without using any special devices. Since this procedure is

perfectly general, it is worth illustration. For the circuit of Fig. 6.9, the

nodal equations appear as

EA <yx + Y2 + Y6 ) - EBY6 - ECY2 = IA ,

~EA (Y6 -JV) + EB (Y4 + Y5 + Y6 ) - EC (Y4 + W) = 0, (6-32)

-EA (Y2 + W)- EBYt + EC{Y2 + Y3 + Y4 + TV) = 0,

if we assume that the circuit is energized by the current IA flowing into

node A. When W = W$ we must have zero transmission from A to B.

This corresponds to AAB = so that fV is the solution of

- (n - rr ) - (F4 + fr )

- (Y2 + W ) (Y2 + Y3 + Yi + W )

= 0. (6-33)

When the determinant is expanded, we obtain again the formula for W
already found in (6-31).



98 NETWORK ANALYSIS Chap. 6

6.8. Amplifier with Local Feedback— Computation of Local Feedback

We will assume that the final object of the analysis of the circuit of

Fig. 6.8 is the determination of the relative sensitivity for the last tube.

The absolute sensitivity for this tube can, of course, be determined immedi-

ately from the relative sensitivity and the ratio W/W' , which is fixed by

the known value of JVq. It is convenient to base the computation of S

for the last tube upon the theorem following equation (5-22) of Chapter V.

We will take W\ to represent the transconductance of the output tube and

W2 that of one of the preceding tubes. The reference values which appear

in the statement of the theorem will be chosen asW and zero, respectively.

The return difference of the output tube for the reference W is, of course,

the same as S'. Moreover, when W\ assumes its reference value the

return difference forW2 is unity, since the main loop is opened. Similarly,

with JV2 at reference the return difference of W\ for the reference Wq is

merely that which would be obtained from a consideration of the " local
"

structure of Fig. 6.9, including the associated line and /3 circuit impedances.

It follows from the theorem, therefore, that the actual relative sensitivity

for W\ is the product of the return difference for W2 and the "local"

relative sensitivity for W\.

This section will be concerned only with the computation of the local

sensitivity. If Y6 = 0, the local circuit is identical with that previously

shown by Fig. 6.7 except that Z7 + Z8 has been added in parallel with Z5 .

The local sensitivity can, therefore, be immediately written down from

equation (6-26) in the form

Zi -\- Z2 -\- Zz Z3 + Z4 + Z9

where Z9 has been written for brevity to represent the complete impedance

composed of Z7 and Z8 in parallel with Z5 .

If Z3 vanishes, on the other hand, the circuit is of the type represented

by Fig. 6.2. The theorem on the computation of the feedback by the use

of an equivalent source is, therefore, still valid. In this instance it is con-

venient to suppose that the equivalent source is defined by Y9 = 00 and

that the comparison of grid responses is made for the condition Yi = »

.

With Yi = 00, a current Ij in the plate circuit will evidently produce a

voltage Ij/(Yi + Y6 + Y9 ) between B and C. With Yx normal, on the

other hand, a generator of unit voltage and zero internal impedance applied

across B and C will produce a voltage Y6/(Yt + Y2 + Y6 ) between A and

C. The local sensitivity is, therefore,



THEOREMS FOR FEEDBACK CIRCUITS— B 99

If neither of the branches 3 or 6 can be ignored the analysis becomes
considerably more complicated. Since the circuit no longer falls in any one
of the classes represented by Figs. 6.2 to 6.5, it is not possible to use the

theorem on equivalent sources to compute the feedback. We can, how-
ever, develop a suitable expression directly from the expansion of the

system determinant. As an alternative which requires substantially the

same algebraic work, although it may seem simpler, it is also possible to

derive the sensitivity from the return difference. By ordinary circuit

analysis the return difference for the local circuit can be found as

pmt
YlYg + Y6 (Yl + Y9 ) + Y3Y6l+

a + bY3 + cY6 + dY3Y6
"' ^M)

where

«~W^.(£ + £ + £ + fJ'

t=(Y1 + Y2)(Y4 + Y9 ), (6-37)

c={Y1 + y9)(F2 + y4 ),

d=Y1 + Y2 + Y4 + F9 .

We know, however, that S( is equal to the F of (6-36) divided by the value

which F would assume if we set W = W§. From the known value of W§
this gives

[YXYQ + y6 (Yi + Y9 ) + Y3Y6](Y3 - Y6W
Si = 1 +

(YtYa + Y3Y6 ) (Y4F5 + Y3Y6)+ Y3 (a + bY3 + dY3Y6 )

(6-38)

6.9. Amplifier with Local Feedback— Final Properties

In accordance with our preceding discussion the actual S' for the third

tube in Fig. 6.8 can be obtained by multiplying (6-38) by the return differ-

ence for one of the other tubes. The return ratio for either the first or

second tube, however, is simply the transmission around the main loop.

This in turn can be broken up into two components, one representing the

transmission from A in Fig. 6.9 to some point such as B, say, and the second

representing the transmission around the rest of the loop. The second will

be symbolized by K and will be assumed to be known since it presents no

special problem.

Since we already know S( for the last tube, equations (6-5) and (6-6)

allow us to compute the transmission from A to B as soon as the fraction-

ated gain of this tube for the reference condition is determined. It will be
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recalled that the grid transmission term in this gain can be calculated for an

arbitrary choice of the load impedance and the plate transmission term for

an arbitrary choice of the input impedance.

Let it be supposed, first, that Y6 = 0. It is then convenient to choose

the arbitrary impedance as an open circuit in each computation. This

has already been examined in connection with (6-7). For the present

circuit the resulting transmission from AtoB can be written as*

Jam = 1 ^ ^» W', (6-39)
Si Z\ + Z2 + Z3 ^3 + Z4 + Zg

where, corresponding to the fact that we have assumed Y6 = 0, S{ must be

determined from (6-34).

If we assume Z3 = 0, on the other hand, it is most convenient

to determine the grid transmission for the condition Z9 = and

the plate transmission for the condition Zx
= 0. With these two assump-

tions the two transmissions are readily seen to be l/(Yi + Y2 + Y6 ) and

1/(F4 + Yq + Y9 ). The gain from A to B consequently becomes

Jab = . JV\ (6-40)
S[ Y, + Y2 + Y6 Y4 + y„ + Y9

" ' ^^

where S{ is determined from (6-35).

If neither of the branches 3 or 6 can be neglected the analysis is naturally

somewhat more complicated but it can be made by the same general

methods. For example, in computing the transmission to the grid, we can

conveniently assume that Y9 = —Y8[(Yi + Ya )/(Yi + Y6 )]. This is

the value of Y9 which gives zero transmission from Y4 to Y2 so that the flow

of current in Y4 due either to transmission in the passive parts of the net-

work or to transmission through the residual transconductance Wq will not

affect the voltage across Y2 . The computation can thus be made

for any assumed value, such as a short circuit, for Y4 . Similarly

in computing the transmission from plate to load we can assume

Yt
= —Y6[(Y3 + Y4)/(Y6 + Y9)] which allows us to short-circuit Y2 .

* The numerator of (6-39) includes the factors Z\ and Z9, for which no correspond-

ing terms exist in (6-7). These factors are introduced to express the result in nodal

rather than mesh terms. Thus in (6-7), where an impedance analysis was used, the

driving force was taken as a unit generator in series with Z\ and the response was

stated in terms of the current through the load. The introduction of the factor Z\

in effect expresses the driving force as a unit current applied to Zu while the intro-

duction of Z9 is equivalent to expressing the response as the voltage across the load.

A nodal analysis is chosen here for consistency with the other equations of this section.
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The expression for the transmission from A to B is accordingly

Mb = -I ys ~ Y«

S( YXY2 + Y1Y3 + Y2YZ + Y3Y6

Y y
X Y3Yt + Y3Y6 + Y3Y9 + Y4Y9

W'> (6_41)

where the first and second expressions involving the l^s are, respectively,

the transmission from the source to the grid and from the plate to the load.

Upon multiplying the appropriate one of these expressions by K, which
represents the transmission from B around the rest of the loop, including

the transconductance of the second tube, we secure the complete nfi charac-

teristic. This then is — T for either the first or the second tube. In

accordance with the theorem on the relation between two return differ-

ences, the actual relative sensitivity for the third tube can be obtained by
multiplying the corresponding F for the first or second tube by the S(

for the third tube, as expressed by equations (6-34), (6-35), or (6-38).

For example, if we assume Y3 = <» and write S' for the total relative

sensitivity of the third tube, the result from (6-35) and (6-40) is

* ' s! +
s? yr+h+Y. v^hrr, W

'K
)

-'+ y, + n + ny4 + y, +n y«+*>**.

(«-C)

As the final step in the analysis we may compute the distortion which
would appear in the load as the result of a prescribed distortion generator

in the plate circuit of the third tube. The theorems of Chapter V show
that this is equal to the distortion which would flow in the load when the

third tube is in the reference condition divided by S' for that tube. We
have, however, already computed the ratio between a given plate current

and the voltage between B and ground for the reference condition. If we
let k represent the ratio between the voltage at B and the resulting voltage

across the final load impedance with the amplifier input circuit open, there-

fore, the results can be immediately written down as

-£
y4 + Y. + r.

7
*

for Z3 = (6^3)

= 7 Y3Y4 + Y3Y6 + yIy9 + Y4Yl
7* ingenera1

'
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where I,- is the prescribed distortion generator and Sf
in each case is the

appropriate relative sensitivity for the third tube.

It will be recalled that a double loop feedback circuit essentially similar

to the one under discussion here was used in Chapter IV to illustrate the

fact that the sensitivity of a tube in the n circuit of a multiple loop structure

was not necessarily equal to its return difference. The illustration can be

made somewhat more specific with the help of the present equations. For

example, suppose we set TV' = — TV in (6-42). This is equivalent to

setting TV = 0, so that the corresponding return difference will be unity.

It is clear, however, that the ratio of relative sensitivity to return difference

is independent of TV, so that it will be the same for actual operating con-

ditions as it is for this special choice. Upon introducing TVn = Y6 , from

(6-28), for the case represented by (6-42) we therefore have

F (Y1 + Y2 + Y6)(Yi + Y6 + Y9 )

It is evident from (6^44) that if we can make K large enough the sensi-

tivity* can be made much greater than the return difference. On the

other hand, by choosing special values for K and the various Ys we can

also secure a sensitivity which is much smaller than the return difference.

The values of these quantities which would appear naturally in normal

design practice are probably not such as to make either extreme very likely.

The fact that the sensitivity and return difference are not necessarily identi-

cal is of considerable theoretical interest, however, since the limitations on

available " feedback " developed in the following chapters are actually

limitations only on the return difference.

* No distinction between S and S' need be made here, since we can readily choose a

JVa small enough to make the two approximately equal, without affecting the rest of

the argument.



CHAPTER VII

Stability and Physical Realizability

7.1, Introduction

The preceding chapters have been devoted largely to the problem of
active network analysis. It has been assumed, in other words, that the
structure under consideration was given, and that we were interested in

finding out what it would do. To this end, the mesh and nodal equations
were first introduced. The succeeding chapters consist principally of
applications of these equations to various situations, with particular atten-

tion to what they could tell us about the relation between a single given

element and the characteristics of the complete network within which it

appears.

Beginning with the present chapter, attention will be turned broadly
from problems of analysis to those of synthesis or design. It will be
assumed in other words that our primary interest is in working backward
from a prescribed type of response characteristic to a network which might
exhibit it. This chapter will serve only to introduce the subject. It is

devoted principally to a consideration of the requirements which a net-

work must meet if it is to be stable and of the limitations which this imposes
on the network characteristics which are available for design.

7.2. Design Methods and the Problem of Physical Realizability

The development of final design methods for feedback amplifiers is

approached here by way of a lengthy and perhaps indirect introduction.

Before beginning the discussion it may consequently be desirable to say a
few words concerning the point of view which motivates this approach.
It must be recognized to begin with that the processes of synthesis or design

are in some respects essentially different from those of analysis. If a net-

work is given, only one response to any prescribed force is possible, and that

response can, in theory, be obtained by a mechanical computation, so that

the whole operation is reduced to a routine level. The design process can-

not be described so exactly. In a broad sense it consists in the construction

of a larger unit by the establishment of a pattern of relationships among a

number of smaller and more easily controlled units. In a feedback ampli-

fier, for example, we are concerned in the first instance with the provision

of suitable characteristics for the amplifier as a whole by the establishment

103
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of an appropriate pattern of relationships among the separate units, such as

tubes, input and output circuits, feedback and interstage networks, etc.,

of which it is composed. Beyond this point we may be concerned with the

relation between any one of these circuits individually and the various

elements from which it is built.

In almost all design situations several or many patterns of relationships

may yield a satisfactory result. For example, we may obtain a given for-

ward gain for a feedback amplifier from various combinations of input and

output circuits, tubes, and interstage networks. On a smaller scale, a

given interstage characteristic can usually be represented, within tolerable

limits, by structures of several different physical configurations. The

choice between the possible solutions may depend upon ulterior considera-

tions, such as economy, reliability, power consumption, the speed with which

parts can be secured, etc., which are not readily taken into account, at

least in detail, in a theoretical discussion. Or it may be purely arbitrary.

In any event the establishment of any one pattern involves essentially an

effort of imagination on the part of the designer. As such it is a creative

operation, on a more or less difficult plane, and defies exact analysis. In a

group of structures which are very much alike, such as a set of amplifiers

meeting similar requirements in about the same frequency range, a general

type of pattern may become so well established that much of the work is

reduced to a routine level. As the diversity of application increases, how-

ever, the essentially creative nature of the design process becomes more

apparent.

It follows from this discussion that design methods suitable for a variety

of applications can never be reduced entirely to a set of rules. They are

best when they leave the final synthesis in the hands of the designer but

stress the development of conceptions and processes which make the

establishment of any particular set of relationships as simple and easy a

matter as possible. This can be done in part by pointing out types of

relationships which are plausible but either cannot be carried out or lead to

unsatisfactory results. It is futile, for example, to plan a feedback ampli-

fier about an assumed input transformer whose gain is greater than can be

obtained with the existing parasitic capacities. On the positive side,

design can be expedited by the construction of general patterns of relations

which can be extended to a variety of situations by the choice of numerical

values for a few parameters, and by the discovery of simple methods of

specifying the subsidiary units which make up a complete structure. An
excellent example here is furnished by conventional filter theory. The

general pattern is the composite filter with matched image impedances.

The subsidiary units are the discrete sections. They are particularly easy
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to deal with since an individual section is specified, in essentials, by a single

parameter, and in their significant properties the sections are directly

additive. The choice of any particular combination of sections to meet a
particular set of requirements, however, is left in the hands of the
designer.

It is evident from this background that what we need most of all in

developing design methods for feedback structures is a characterization of
the available units which may enter the complete structure in terms which
are as easy as possible to handle in planning the over-all design. This is,

of course, necessary if we are to avoid blind alleys of the type described

previously. It is also required in planning any general design patterns
which are likely to be of practical value and it is necessary again in fixing

the proportions of any specific pattern. As a matter of actual experience,

it appears that if the characteristics of the units of the amplifier can be
properly specified in broad terms the road to a final detailed design is

relatively straight.

In network synthesis, a characteristic is " available " in the broadest
sense if it can be furnished from some combination of physically obtainable
elements. The restriction to physical elements is one which does not
appear in network analysis. It makes no difference in the routine of deter-

mining the response of a given structure whether the elements are positive

or negative, to say nothing of whether or not they are accompanied by
parasitic effects of the types which might occur in practice. In network
design, however, the restriction is fundamental and will be the next object

of investigation. It is unfortunately a difficult topic and will require

several chapters.

The quantities which appeared most conspicuously in the preceding
analysis were the driving point and transfer immittances, the return differ-

ence, and the sensitivity. They may be lumped together under the general

name, networkjunctions. They are all defined as ratios of determinants so

that they are all rational functions ofp. It will be recalled from Chapter I

that any rational function can be specified, except for a constant multiplier,

by its zeros and poles. In the next few chapters the condition of physical

realizability will be discussed in terms of the restrictions it imposes upon
the location of the zeros and poles of the various network functions on the
complex p plane. Following this discussion, the restrictions on the zeros

and poles will be converted into equivalent restrictions on the behavior of
the functions on the real frequency axis. This background is necessary in

order to provide a specification in useful form of what is available in design-

ing a feedback structure. With it as a foundation we will at length be
able to approach the actual design problem directly.
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7.3. Criteria of Physical Realizability

Before we can study the restrictions which the condition of physical

realizability places upon available network functions, it is evidently neces-

sary to find some formulation of what we mean by physical realizability

which can be used as a basis for deduction. Perhaps the most obvious for-

mulation is expressed by the statement that a physically realizable network

is a combination of vacuum tubes and positive inductances, capacities, and

resistances. This, however, is both awkward and misleading. Except in

the very simplest configurations a study of the relationship between the

signs of the elements and the resulting network characteristic entails

intolerable algebraic complexities. Moreover, it can readily be shown*
that any negative element can be simulated, at least in the ideal case, by a

suitable combination of tubes and positive elements. The distinction

between positive and negative elements thus cannot be the heart of the

problem.

Although the sign of the elements cannot be used as a basis for analysis,

some importance can be attached to the fact that the elements must at

least be real. It follows immediately from this that if the frequency vari-

able is taken as p, the coefficients in the mesh and nodal equations, and
therefore the coefficients in the network functions, must also be real. If

we replace p by its conjugate in any term of a network function, conse-

quently, that term must assume the conjugate of its original value. Since

conjugate values everywhere in the function must lead to a conjugate result,

this establishes the

Theorem: A physically realizable network function"assumes conjugate

complex values at conjugate complex points on the p plane.

For most applications this theorem can be expressed more conveniently

by means of the following two corollaries:

1. Any zeros and poles of a physical network function which are not real

must occur in conjugate complex pairs.

2. The real and imaginary components of a physical network function

on the real frequency axis have respectively even and odd symmetry
about the origin.

*

The first ofthese evidently follows from the fact that zero and infinite values

of a network function are their own conjugates, while the second is estab-

lished if it is noticed that symmetrical positive and negative real frequencies

are a special case of conjugate p's. We may also observe that since the

zeros and poles specify the network completely except for a constant

* See, for example, the circuits described near the end of Chapter IX.
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multiplier, and the multiplier must be real if the second corollary is to hold,

the two corollaries together are equivalent to the original theorem.

The theorem on real element values is sufficient to restrict the range of

available characteristics only very generally. The field can be narrowed

much further from a consideration of the stability of the network. It is a

familiar fact that many hopefully designed feedback structures " sing," or

break into spontaneous oscillation, when the circuit is closed. This is

customarily explained by regarding the free oscillation as a manifestation

of one of the natural transients of the system. It is assumed, in other

words, that the system has been exposed to some small shock which pro-

duces a normal transient response. In most systems transients are expon-

entially decreasing functions of time and quickly die out. If the system

sings, however, it is supposed that one of the transients is negatively

damped, and so increases with time. In this case it will eventually become

very large, no matter how small the initial shock may have been. Since

random small shocks, on the level of thermal vibrations at least, are una-

voidable, the phenomenon must occur if the system has any possible tran-

sient response which increases with time.

In a physical situation the amplitude of the oscillation may become
large enough to burn out part of the system. Otherwise, it is limited by
the inability of the system to maintain a linear response characteristic for

amplitudes beyond a certain range. This is true, for example, in an ordi-

nary oscillator, where the amplitude is limited normally by the physical

possibilities of the output tube. Since the analysis in this book is con-

fined to linear circuits either eventuality removes the structure from our

purview.*

It may seem at first sight that although the possibility that the network

may break into free oscillation may be important, it should be considered

separately from our immediate problem, which is the investigation of the

steady state characteristics of the network. A connection between the

two problems, however, appears from the well-known fact that the tran-

sient response of a network can be predicted from its steady state charac-

teristics. The analysis given in later chapters shows that this connection

is so close that the steady state characteristics which may be obtained from

stable structures are radically limited in comparison with the characteris-

tics obtainable from mathematical functions chosen at random. Since

there is no point in discussing the hypothetical " steady-state " character-

* In some modern oscillator circuits the amplitude of the oscillation is limited by a

thermally controlled element. These are essentially linear circuits, since the change

in the thermistor over one cycle is negligible, and it is not intended to exclude them
here. After the thermistor reaches its steady value they can be regarded as stable

structures, but with a root on the real frequency axis, as described later.
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istic of a structure which will in fact sing when it is constructed, there

is economy of thought in combining the two ideas to begin with. The
essential statement of what we will mean by physical realizability can

therefore be expressed by the following

Definition: A network function will be said to be physically realiz-

able if it corresponds to a network of real elements having

no modes of free vibration whose amplitudes increase

indefinitely with time.

This will also be regarded as a definition of what is meant by a stable*

circuit. The relationship between the modes of free vibration and the

steady state network functions is described in the following sections and,

more generally, in later chapters.

The definition just given is the foundation upon which the analysis of

general circuits, including both vacuum tubes and passive elements, will

be based. A structure composed exclusively of passive elements, on the

other hand, cannot give as wide a variety of characteristics as would be

admissible from this definition alone. Since many of the units of which a

typical feedback amplifier is composed, such as the interstage networks and
the feedback circuit itself, are purely passive, it is of interest to determine

what these additional restrictions on passive circuits may be. An analysis

of this problem is given at the end of this chapter. Pending this analysis,

the following results will be assumed:

1. A passive circuit is always stable.

2. The real component of a passive immittance is never negative at real

frequencies.

3. If a passive network is driven by a single real frequency generator the

power delivered to the network as a whole is always at least as great

as the power consumed by any one resistance in the structure.

The second and third of these conditions are evidently merely consequences

of the principle of conservation of energy, in combination with the fact

that a passive network cannot contain a source of power. The justification

for the first may not be quite so obvious, but the proof given later estab-

lishes it on the same general grounds, using the methods of classical

dynamics.

* It is to be noticed that stability as defined here includes, as a limiting case, the

possibility of purely sinusoidal transients which neither increase nor decrease with

time, such as characterize purely reactive structures. This limiting case is discussed

in more detail in a later section.
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7.4. Stability and the Roots of A

Our first object will be the development of some analytic tool for investi-

gating the relation between the steady state characteristics of the network
and its stability. The stability of the circuit depends upon its possible

transient responses and is therefore best determined from a study of the

differential equations representing it. This is facilitated by the fact that

the general mesh and nodal equations of Chapter I were first developed in

differential form. Equations (1-2) of that chapter, for example, give the

differential mesh equations and can be rewritten here as

Ln
d
-j

t
+ Ruh + Dn Jiidt+•

din . r\ C •+ Lin ~ + Rlnin + -Din / indt =
dt

£21 —77 + R.21*1 + A21 / i\dt +
dt

didi n C+ L2n —r + R2nin + D2n I indt =

(7-1)

Lnl
-J

+ Rnlh + Dn l J t\dt + • • •

di C+ Lnn —77 + Rnnin + Dnn
f

indt = 0.

These are essentially the same as the original expressions, but the instan-

taneous currents have been represented by small rather than capital letters

and differentiation and integration with respect to time have been written

out explicitly in order to avoid confusion with later notation. The driving

voltages on the right-hand side of the equations have also been omitted,

since we are interested only in the free response of the system.

Let it be supposed that the possible transients are exponentials of the

general form e
pt

. The individual currents i\, i2 ,
• • •, in can be written as

I\ePi , l2e
pt

>
• •

j Ine
pt

, where the I's are constants whose magnitudes will

depend upon the original disturbance. In general, the p's representing

possible transients may exist either as real quantities or as conjugate

complex pairs. If p is complex the " currents " I\evt, l2^pt, etc., must

also be complex. As in Chapter II, however, the real components of

these " currents " satisfy the differential equations by themselves and

may be taken to represent the actual physical transients.

Upon substituting I\evt, l2^
pl

, etc., in (7-1) and dividing out the com-

mon time factor, e
pt

, the result appears as
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(pLn + Ru +—) A + (pL12 + Ria +—) h + •

+ (pLln + Rln +—) /„ =

(pL21 + R21 +—) /i + (pL22 + R22 +—) /, + ••

+ (pL2n + R2n +—j /„ =

(7-2)

/2 +(p£nl + Rnl + ^j h + (pLn2 + Rn2 +^
+ (pLnn + Rnn + "^J In = 0.

It is evident that Ii = 72 = •••=/„ = is always a solution of equations

(7-2). Since there are n equations and n I's we may expect, in general,

that the I's will be uniquely determined, so that this is the only solution.

If the transient is to exist physically, however, some, at least, of the I's

must be different from zero. This will be possible provided p is so chosen

that the n equations represent fewer than n independent conditions on the

Z's. We might find, for example, that with a special choice ofp one of the

equations was equal to the sum of two others. It can be shown* that the

general condition for the n equations to represent fewer than n independent

relations is that the determinant of the coefficients in the equations should

vanish. The expression which fixes the values of p which may represent

transients is therefore

A = (7-3)

where A is, of course, identical with the A we have previously used and is a

polynomial in p divided by some power of p.

If one of the /s which satisfies (7-3) lies in the left half-plane, it follows

from the discussion in connection with Fig. 2.2 that the correspond-

ing physical transient will be a damped sinusoid of the general form

fat
cos fit. Itp lies in the right half-plane, on the other hand, the transient

will be of the form e
at

cos fit, where a is positive in either case. A sinusoid

with exponentially increasing amplitude, such as e
at

cos fit, is, however, a

* See, for example, Dickson's Modern Algebraic Theories, p. 55, or B6cher's Intro-

duction to Higher Algebra, p. 47.
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runaway transient of the type barred out by our preceding definition of

physical readability. We can therefore state the following

Theorem: None of the zeros of the principal determinant of a physical

network can lie in the right half of thep plane.

An example of a permissible dis-

tribution of zeros is given by Fig.

7.1. As the figure shows, some of

the zeros are taken as real and others

as conjugate complex pairs. Most
of the zeros are found in the interior

of the left half-plane, but there is in

addition one zero at the origin and

a pair of conjugate zeros on the real

frequency axis. Zeros of this type

correspond to transients whose am-

plitudes are maintained with time

but do not increase. There is thus Fig. 7.1

no physical reason for barring them

out on grounds of instability, but they represent the extreme limit which

can be attained in a stable structure.

A more detailed example of permissible zeros can be obtained by return-

ing to the damped resonant circuit which was used as an illustration in

Chapter II. The zeros were given by equation (2-27) of that chapter as

p^-tl +4(t$-v *2
=
-#-\/(i) -r (7_4)

They were described there as the zeros of impedance but since Z = A/An
they are evidently the same as the zeros of A. When R = the two p's

lie on the real frequency axis. With moderate damping they occupy con-

jugate points in the left side of the p plane, while when the damping is

extreme they are found on the negative real axis. This is illustrated by

Fig. 2.4 of Chapter II. It is interesting to notice that in this simple case

the stability requirement corresponds almost exactly to the requirement

that all the elements be positive. If we change the sign of any one or

any two of the elements at least one of the zeros will be found in the right

half-plane. The only possibility is the obviously symmetrical situation

obtained by making all three elements negative.

7.5. Zeros of A on the Real Frequency Axis

The possibility of securing zeros of A at real frequencies, which was

exemplified by Fig. 7.1, merits further discussion. In passive structures
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zeros must be found at real frequencies if the network is composed only of

pure reactances.* In the resonant circuit just described, for example, real

frequency zeros were obtained by setting R = 0. They may also be

obtained, even with dissipation, in active circuits containing sources of

power which just balance the dissipative losses. As an example of this

condition we may imagine a feedback amplifier which is normally stable

but can be made unstable by an appropriate change in some continuously

variable control. Zeros would be found on the real frequency axis in this

circuit if we could set the controlling element on the exact point dividing

the regions of stability and instability.

The probability of securing such exact balances or such ideally dissi-

pationless elements in a physical structure is evidently infinitesimal. We
are thus entitled to assume, if we wish, that all the zeros in physical

circuits are somewhat to the left of the real frequency axis. This possi-

bility will not be utilized in dealing with ordinary reactive resonances in

passive circuits. The assumption of zero dissipation is frequently a con-

venient idealization, especially in dealing with driving-point immittances.

On paper, it may also arise in transfer immittance problems, as it would, for

example, if we were computing the transmission through a dissipationless

filter which is either open- or short-circuited at both ends. For practical

purposes, however, the consideration of four-terminal problems will be

restricted to circuits in which the terminations, at least, are dissipative.

The other possibilities of securing real frequency zeros arise in circuits

containing active elements. Here it will be convenient to suppose that the

zeros lie, in fact, slightly to the left of the real frequency axis. Aside from

the question of convenience, there are special physical reasons for making
this assumption. At a real frequency zero a driving force of corresponding

frequency inserted in any part of the circuit will produce an infinite response

everywhere else in the circuit. For example, if the input and output of an

amplifier are represented respectively by 1 and 2 the output current in

response to a unit input voltage is Ai 2/A, so that there should be infinite

gain to a driving force whose frequency coincided with one of the zeros of A.

In a physical situation, of course, we would expect the active elements to

become overloaded and excessively non-linear as soon as this frequency was
approached. Since the exact location of the zero would be immaterial in

any case if we were interested only in driving forces at more remote fre-

quencies, there is thus a special justification for the assumption on grounds

of linearity.

A convenient example is furnished by the thermistor controlled oscillator

described in a previous footnote. If the amplitude of the oscillation is

* See, for example, the discussion <?iven near the end of the chapter.
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small and there is reasonable selectivity in the thermistor circuit this should

be a linear network for signal voltages at frequencies remote from that of
the natural oscillation. In these ranges, however, the steady state charac-

teristics are negligibly affected if we move the zero of A slightly away from
the real frequency axis. If driving forces in the neighborhood of the zero

are applied the circuit must become non-linear, since we can no longer

assume high discrimination against signal currents in the thermistor circuit,

and the thermistor temperature will be affected by the heat generated due
to the passage of signal currents through it.

If zeros of A are assumed to occur at real frequencies they are subject to

one restriction which has not appeared heretofore. It was tacitly assumed
in discussing (7-3) that all the zeros were separate. In special cases,

however, multiple zeros may occur. It is known that in such circumstances

the form of the transient solution may be changed. Instead of consisting

solely of exponentials it may also include exponentials multiplied by powers
of/. For example, ifp is a double zero of (7-3) the corresponding transient

appears in the general form Aept + Btevt . If p is in the interior of either

the right or left half-plane the extra factor / in the second term is of no
significance in determining whether the transient will increase or diminish
with time, since it is overwhelmed by the exponential. In the special case

when p is on the real frequency axis, however, it makes an increasing tran-

sient of one which would otherwise be merely persistent. Since transients

which increase with time are inadmissible we can therefore state the

Theorem: Zeros of A on the real frequency axis must be simple.*

7.6. Zeros of Other Determinants

In addition to A itself, the network formulae which have been developed
involve other determinants derivable from A in various ways. One group
of these includes A and what may be called the " symmetrical " minors
A.» Ayy, Ahjj, etc. Each of these quantities can be regarded as the form
to which A reduces when some prescribed change is made in the network

* This theorem is not rigorously true in degenerate circuits. Suppose, for example,
that the system consists of two identical but entirely independent units. A single

set of mesh equations may be used to describe both units. The determinant of the

system will be the product of the determinants for the two units separately, and must
have a double zero at any real frequency at which the determinants of the separate

units have simple zeros. The slightest coupling between the units, however, will

destroy this relation. In any event, such an exception does not destroy the physical

consequences of the theorem, since we are eventually interested in the zeros, not ofA
itself, but of the ratio of A to one of its principal minors. If A has a multiple zero
because of such a degeneracy, the minor will have a zero one order lower, so that the
zero of the ratio is still simple.
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and their zeros can consequently be limited in the same way as those of A

itself if the network is known to be stable after the change is made. Thus

A is the form to which A reduces when some given elementW vanishes and

can have no zeros in the right half-plane, and only simple zeros at real

frequencies, if the circuit is stable with W absent. This would certainly

be true, for example, ifW represents one of the tubes in an ordinary single

loop amplifier, since when W vanishes the loop is opened.

Similarly, such quantities as A« or Ay,- are the cofactors of Wu or Wjj

in A. They are thus the forms to which A reduces* when Wu or Wjj

becomes infinite. This is equivalent to open-circuiting the z'th or jth

mesh, if we are using a mesh analysis, or short-circuiting the «th or_/th node

to ground, if we are using a nodal analysis. In the same way, A«yy gives

the result when the open or short circuit is applied both at / and at./. The

zeros of any of these quantities are restricted in the same way as those of A
itself if the network is stable after the open or short circuit is applied. This

is true, for example, if we are dealing with a series impedance or shunt

admittance in a single loop amplifier, since an open-circuited series branch

or a short-circuited shunt branch will break the feedback loop.

All these relations become particularly simple in passive networks.

Obviously, a passive network is still passive after any of these various

operations is performed upon it. The proposition stated previously, that a

passive network is always stable, therefore allows us to establish the

Theorem: In a passive circuit none of the zeros either of A or of any

of the symmetrical minors of A can lie in the right half of the

p plane, and any zeros on the real frequency axis must be

simple.

The remaining determinants which appear in the network formulae are

" unsymmetrical " minors of the general types A;y, A tyM , A^j, etc. These

can evidently be regarded as the forms to which A reduces when indefinitely

large unilateral couplings are added to the circuit. For example, since

Afy is the cofactor of Wu, it is the limit which would be approached by A

if we introduced into the circuit an ideal vacuum tube of extremely high

gain with grid terminals at j and plate at /. Unfortunately, there is

ordinarily no simple method of determining whether the circuit will be

stable after this modification is made, so that such a physical interpreta-

tion is of no great value. For circuits of general physical configuration it

appears that the zeros of these unsymmetrical cofactors may appear in any

part of the plane, even when the structure is made up entirely of passive

* Obviously, the limits approached by A in the two cases are actually WaAu and

ff^jjAjj. Since we are concerned only with the location of the zeros ofA, however, the

multipliers Wu and W^ can be disregarded.
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elements. They are restricted only by the conjugacy condition. Restric-

tions on these zeros can sometimes be imposed when the network is known
to have one of certain special physical

configurations, but this is more con-

veniently discussed in a later chapter.

7.7. Zeros in an Illustrative Circuit
R

These principles will be exemplified

by means of the circuit shown by Fig.

7.2. The structure will be taken ini-

tially as the Bridged-T of purely passive

elements. The broken lines shown

going to A and B are connections made
to the vacuum tube at a later stage to show how an active element affects

the stability of the circuit.

It will be assumed for concreteness that all the passive elements are of

unit magnitude. If the meshes are chosen as shown in the figure, with

the tube deleted, the mesh equations in the absence of any driving force are

Fig. 7.2

(, + . + a h-ph--h
=

p

-ph + (2p + 1) 72 - ph = (7-5)

P
Ph + (p + 1 +

-J
h = 0.

The equation corresponding to (7-3) is consequently

A =

p + 1 +

~ P

_ 1

P

1

P

2p+\ - p

~P p + 1 + -

P

= (7-6)

or

A = - (3p
3 + 4/ + lp + 2) = 0.

P
(7-7)

The roots of (7-7) are p = —\ and p = -\{\ ± *V7). They are

indicated by the circles in Fig. 7.3. They are all on the left half of the

p plane, as of course they should be, since the network, being passive, is

necessarily stable.
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—i^-O-

i?

We may next proceed to verify that

the zeros of A and of the symmetrical

minors of A are also confined to the left

half-plane, for the passive structure.

Let it be supposed that A represents

the system when Z2 = 0. The disap-

pearance of L2 is equivalent to replac-

ing the Z22 , Z23, Z32 , and Z33 terms
in (7-6) respectively by (p + 1), 0, 0,

and (1 + 1/p). We readily find that

the equation corresponding to (7-7)

appears as

Fig. 7.3

*° = ±(l+p)».
P

(7-8)

This has a double root at p = —1,
which is, of course, in the left half-plane. The double root is represented
by the crosses in Fig. 7.3. Similar results hold if A represents the system
after any other element has vanished.

As an example of a symmetrical minor we will take A22 . This quantity is

given from (7-6) as

A22 =
P+l+l

P

_ 1

P

_ 1

P

P+1+-
P

1

(p
3 + 2p

2 + 3p + 2). (7-9)

• The roots are in the left half-plane at the points —1 and — \{\ ± is/l).

They are indicated by the squares in Fig. 7.3.* The second order symmet-
rical minors are still simpler since they are the same as the self-impedances

* The fact that many of the roots of these various expressions happen to coincide
is due to the specially simple and symmetrical form of the network, and would not be
true in general. For example, Ri, R3, Lu and Z,2 constitute a balanced bridge as seen
from R.2. A generator in series with i?2 can therefore produce no current in D so
that the driving point impedance measured in the second mesh must be much simpler
than the structural complexity of the circuit would indicate. This is reflected by the
fact that A and A 22 have common roots, which cancel out in the ratio A/A 2 2, repre-
senting this impedance.
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of the several meshes. For example, we have A1133 = 2p + 1, with a root

atjp = -i
The properties of the unsymmetrical minors will be illustrated by means

of A31 . We find from (7-6) that

A31 =

= - (p
3 + 2p + 1). (7-10)

P

The roots occur at p = —0.453 and at p = +0.227 ± /l .47, as shown by

the triangles in Fig. 7.3. They are thus found in both halves of the plane.

This must be anticipated, in general, whenever we are dealing with unre-

stricted circuits. By choosing special configurations or special element

values, on the other hand, the roots of an unsymmetrical minor may be con-

fined to the left half-plane, just as are those of the determinants previously

considered. As an example, suppose that a resistance R is added in series

with L\ of Fig. 7.2. We may suppose that R is simultaneously subtracted

from R\ and R2, so that the change affects Z12 and Z21 but not the self-

impedances Zn and Z22- It is readily shown that (7-10) becomes

A31 = - (p
3 + Rp2 + 2p + 1). (7-11)

P

All the roots lie in the left half-plane when R > \. For example, if

R = % they are found at p = -0.52 and at p = -0.074 ± <1.38. These

locations are shown by the primed triangles in Fig. 7.3. The reason for

paying particular attention to networks for which the roots of at least

certain specified unsymmetrical minors can be confined to the left half-

plane is that this leads to the " minimum phase " condition, which is of

considerable importance in amplifier theory. " Minimum phase " net-

works are mentioned again in one of the following sections, but a detailed

discussion of their properties is reserved for a later chapter.

In order to exemplify the changes which may be produced in these results

by the presence of an active element, we may suppose that the vacuum
tube is added to the network by closing the connections indicated by the

broken lines in Fig. 7.2. We can take R\ and R% to represent the grid and

plate impedances of the tube. Since R\ = 1, the transimpedance of the

tube, which is equal in general to y. times its grid impedance, becomes

simply n, and the incorporation of the tube is equivalent to adding fi to Z31

in the mesh equations. The new determinant of the system is readily
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found from this as

A =

P + 1 +

-P
1

ix

P

~P

1p+l

~P

_ 1

P

~ P

P+ 1 +-
P

= - [3p
3 + 4p

2 + 7p + 2 + M (p
3 + 2p + 1)]. (7-12)

P

When m is very small the zeros of (7-12) will evidently be very close to

those originally determined from (7-7). As n is made larger and larger,

however, some of them will eventually appear in the right half-plane, so

that the network will become unstable. This can be studied most easily

by observing that since the zeros must vary continuously with n they can

go from one half-plane to the other only by crossing the real frequency axis.

If we assign a pure imaginary value to p in (7-12), however, the real and
imaginary components of the expression can be separated and equated to

zero individually. This gives

and

(3 + tip* + (7 + 2y.)p =

Ap2 + (2 + „) = 0.

If we eliminate m between (7-13) and (7-14) the result is

ipB + 7p
3 - 3p = 0,

(7-13)

(7-14)

(7-15)

which is satisfied by p = 0, p
2 = —2.1, and p

2 = +0.35. The last of

these can be disregarded, since it evidently does not correspond to a point

on the real frequency axis. It represents an accidental solution of (7-13)

and (7-14) in another part of the plane. The first two, however, are valid

solutions and correspond respectively to n = —2 and ju = +6.4. We can

therefore conclude that the network will be stable for 6.4 > fi > —2, and
will sing when n is taken beyond these limits. For example when n = 9
the zeros are p = —0.43 and p = +0.05 ± HAS, while when ju = —2.5
they arep = +0.18, ^ = -0.74 and^> = -7.5.*

These relations are illustrated by Fig. 7.4. As the gain of the tube is

changed from /i = to /j = +oo the zeros move along the approximate

* The negative fi assumed here could not, of course, be obtained from an ordinary
tube, but it might be secured by using one of the " negative transconductance " tubes

which have been developed experimentally.
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paths shown by the solid lines in the drawing, following the directions indi-

cated by the arrows. The paths for the range /t = 0toju= ~°° are

shown by the broken lines. The crosses and squares correspond to the

roots just determined for the special values n = 9 and /i = —2.5. The
circles give the original positions of the zeros when p = and the triangles

their final positions when n = ±oo. As a comparison of (7-10) and

(7-12) indicates, the final positions are the same as those of the roots of
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Fig. 7.4

A31 . Since some of the roots of A31 are found in the right half-plane in this

illustration, it is evident without further analysis that the circuit must
sing if fi is made sufficiently large in either direction. This may serve to

explain to some extent the reason why so much stress was laid in our previ-

ous discussion on the possibility of confining the roots of this determinant

to the left half-plane.

The modifications produced in the other determinants of the network by
the addition of the active element are of a similar type. The chief point

to notice is that the zeros of A and of the symmetrical minors necessarily

occur in the left side of the plane only when the circuit is passive. After

the addition of the tube they will, in general, appear in the right side for

/m's beyond a certain range. As a final example we may consider the effect

of the tube on A22- When n is included this determinant becomes

^22 = ~(P
3 + 2p

2 + 3p + 2 + M).
P

(7-16)

We readily find with the help of methods similar to those used in connection

with (7-12) that all the zeros of this expression lie in the left half-plane
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for 4 > n > — 2, but that some of them occur in the right half-plane for /j's

outside this range.

It is to be observed that the range of stability for A22 is not identical

with that for A. For example, if we were to choose n = 5 the network as

it stands would be stable, since all the zeros of A are still in the left

half-plane, but the structure would sing if R2 were open-circuited, since

with this value of n some of the zeros of A22 have crossed the real frequency
axis.

7.8. Summary of Requirements on Network Functions

It is convenient to pause here to summarize the implications of the preced-
ing discussion for the various network/unctions. The network functions can
be listed as the driving point immittanceW = A/Ayy, the transfer immit-
tance Wt = A/A,-y, the return difference F — A/

A

, the absolute sensitivity

5 = — AA12/7FA13A42 , and the relative sensitivity S' — — AA1243/A13A42 .

The two sensitivities and the return difference are included here largely

for the sake of completeness. Design methods to give direct control of

sensitivity, in cases where it departs materially from the return difference,

have not yet been developed. The return difference is under better design

control, but in ordinary circumstances it is most easily treated in terms of

the return ratio, which, since it is a loop transmission characteristic, has
properties essentially similar to those of the transfer immittance.

We will begin by listing the requirements which must be met by network
functions corresponding to any stable physical circuit, and continue
with additional requirements which are satisfied by special classes of struc-

tures of particular interest, though not by all structures. The most
obvious requirements arise from the fact that the driving point and trans-

fer immittances, the return difference, and the two sensitivities are all

rational functions of p with real coefficients. They must therefore meet
the following conditions:

1. Zeros and poles are either real or occur in conjugate complex pairs.

2. The real and imaginary components are respectively even and odd
functions of frequency on the real frequency axis.

These are the only requirements which can be placed upon the sensitiv-

ities, in general. We cannot even restrict the location of their zeros, since

the numerators of the two expressions include, respectively, the unsym-
metrical minors Ai2 and A1243 , whose roots may lie anywhere. These
functions will therefore not be considered further here. The numerators of

the remaining three functions consist of A alone. For these functions,

consequently, we can state the following additional requirements:
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3. None of the zeros can be found in the right half-plane.

4. Zeros on the real frequency axis must be simple.*

These four requirements are the only ones which can be stated for the

driving point and transfer immittances and the return difference in the

general case. For example, in terms of the notation adopted earlier in this

section the poles of these several functions are respectively the roots of the

determinants Ayy, Ai}; and A . It will be recalled from our earlier discus-

sion that nothing in general could be said about the roots of Aj,-. The

roots of Ajj and A were interpreted as the natural modes of vibration of the

network after it was modified in certain special ways, and therefore could

not appear in the right half-plane if the modifications did not make the

circuit unstable. In general, however, there is no necessary connection

between the stability of the modified and unmodified structures. For

example the illustrative circuit described in the preceding section was stable

in its normal condition when the gain of the tube lay in an intermediate

range near n = 5, but became unstable in this range for the condition repre-

sented by making A22 the criterion.

We must therefore conclude that in the most general case the poles of the

return difference and of the driving point and transfer immittance functions

may lie anywhere in the plane. Nevertheless, the special conditions for

which they are confined to the left half-plane are of particular interest.

They may be listed as follows:

5a. None of the poles of the return difference can lie in the right half-

plane, and poles on the real frequency axis must be simple, if the circuit

remains stable when the specified element W vanishes. This requirement

is always met by a passive network.

5b. None of the poles of a driving point immittance can lie in the right

half-plane, and poles on the real frequency axis must be simple, if the circuit

remains stable when an infinite immittance is added between the driving

terminals. This requirement is always met by a passive network.

5c. Poles of the transfer immittance may occasionally be found in the

right half-plane, even for passive networks. Transfer immittances having

no poles in the right half-plane, however, have the special property of being

" minimum phase shift " functions. The reason for adopting this name,

and the significance of the minimum phase relation, will be discussed in

later chapters. It makes no difference for the minimum phase property

whether poles on the real frequency axis are simple or multiple.

These five requirements complete the list of conditions of special interest

* With the restriction that zeros exactly on this axis may sometimes be regarded

as inadmissible from the considerations discussed previously.
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for the return difference, but it is desirable to carry the consideration of
driving point and transfer immittances one or two steps further. The
principal remaining point is the fact that either of these immittance func-

tions can satisfy all the preceding requirements and still not correspond
to a passive network. The additional requirements which must be satisfied

by passive structures are, however, readily derived from the conditions
described earlier and can be written as follows:

6a. The real component of the driving point immittance of a passive
circuit cannot be negative at real frequencies.

6b. If a transfer immittance function corresponds to a passive net-
work, the response which it specifies in the final branch, representing
the load, must not be so great that the power consumed in the load at any
real frequency would exceed the power which would be delivered by the
generator if it were separated from the network and connected to a load
equal to the conjugate of its own internal immittance.

Condition 6a is evidently only a restatement of the second of the three
conditions given previously for passive structures. The fact that it is not
a consequence of the first five conditions is easily seen if we notice that they
would be satisfied equally well by the negative of a passive immittance.
It is also possible to satisfy them with an immittance function whose real

component is positive in some frequency ranges and negative in others, as
is shown by the examples given in the next section. Condition 6b can be
understood if it is recalled that the maximum power obtainable from a
generator with a prescribed internal immittance is secured when the load is

equal to the conjugate of the internal immittance.* This maximum must
evidently be at least as great as the power which would flow from the
generator into the actual network, and therefore, from the last of the three
power conditions, at least as great as the power consumed by the actual
load.

It is important to notice that 6a and 6b, although they both refer to
passive circuits, are in other respects quite dissimilar and cannot be inter-

changed. For example, another way of expressing 6a is to say that the
phase angle of a driving point immittance cannot exceed ±90°. This
would be an entirely irrational limitation in most transfer immittance
problems, where the phase shifts may, in general, be made as large as we
please. Similarly, in dealing with 6b we may notice that the transfer
immittance, since it is a rational function of frequency, is completely deter-
mined by its zeros and poles together with a multiplying constant. The

* See, for example, K. S. Johnson, Transmission Circuitsfor Telephonic Communica-
tion, p. 14.
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response in the final branch varies inversely with the transfer immittance

and, with given zeros and poles, can be made as small as we please* every-

where on the real frequency axis, by choosing the constant multiplier large

enough. Condition 6b is thus, in effect, a limitation on the constant multi-

plier and would have no meaning in a driving point immittance problem.

One final requirement, which specifies a particular class of driving point

immittances analogous to the minimum phase shift class of transfer immit-

tances, may also be mentioned. As in the minimum phase shift case, the

properties to which the restriction leads will be discussed in a later chapter.

It is introduced here merely to secure a complete list for future reference.

We have:

7. A driving point impedance which meets the foregoing requirements on

driving point immittances and in addition has no zeros on the real fre-

quency axis is of " minimum susceptance " type, and it is of " minimum
reactance " type if it has no poles on the real frequency axis. If the

function represents a driving point admittance the terms " minimum sus-

ceptance " and " minimum reactance " are interchanged. It is evidently

possible for an immittance to be both "minimum susceptance" and
" minimum reactance."

7.9. Examples of Admissible Network Functions

These various requirements may be exemplified by the set of expressions

given in the following list.

Zi
p
2 + p + 2

Sp2 + 3p + 4

z2
p
2 +P + 2

Ap2 + 2p + 2

Zz
p
2 + p + 2

3p
2 +p

<7 p
2 + p + 2

Ri =

R2 =

Rs =

R,

5a,
4 - llo>

2 + 8

(4 - 5a,
2
)
2 + 9«2

4(1 - a.
2
)

2

(2 - 4a,
2
)
2 + 4a,

2

3a,
2 - 5

9a,
2 + 1

a,
2 - 2

(7-17)

2p
z - 2 2(«

J + 1)

The expressions have been written as impedances, since driving point

immittance functions, in general, may satisfy the most elaborate set of

requirements. The R's represent the real components of the corresponding

* Since the analysis implies that the circuit is dissipative, zeros of transfer immit-

tance at real frequencies, which would invalidate this argument, are ruled out for the

reasons given previously.
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Z's at real frequencies, and are determined by substituting p = ico and
rationalizing in the ordinary manner. Each impedance is obtained from

the preceding one by combining it in parallel

with a resistance of value — 1 .* This is illustra-

Zj\ ted by Fig. 7.5, where the internal impedance of
the generator is assumed to be zero. The short-

circuit generator impedance is important, since

Fig. 7.5
tne impedance zeros which determine stability

are those of the complete network, including
the generator. If the generator impedance is not zero the addition of the
successive negative resistances may evidently affect the zeros of the com-
plete impedance, and therefore the stability.

Turning first to Zx in (7-17), we notice that it is a rational function of p
with real coefficients whose zeros and poles are all in the left half-plane. It
thus meets requirements 1, 2, 3, 4, and Sb of the preceding list. In the
corresponding Rly the denominator, being a sum of squares, is always
positive at real frequencies. The numerator is also always positive, since
it can change sign only by passing through zero, and it is readily seen that it

has no zeros for real values of a. Z1 therefore meets requirement 6a also
and represents a passive impedance. Since it has no zeros or poles on the
real frequency axis, it also meets, incidentally, the " minimum reactance

"

and " minimum susceptance " conditions as given by requirement 7.

As we add negative conductance gradually in parallel with Zu there is at
first no change in the character of the function. f The resistance component
however diminishes and may at length become negative. The boundary
condition is represented by Z2 . R2 is still positive everywhere, but
touches zero at o> = ±1. With further increments of negative conduct-
ance, condition 6a is no longer satisfied, although the remaining conditions,
including Sb, may still be valid. _For example, in Z3 the resistance com-
ponent changes sign at co = ±Vs/3. The poles are still in the left half-
plane, although one of them is on the boundary at p = 0. Finally, Z4
represents an impedance satisfying only the first four conditions.
The addition of more and more negative conductance in the circuit of

Fig. 7.5 will evidently not make the circuit unstable, so that beyond Z4
the first four conditions are always satisfied. An example of an unstable

* The introduction of the negative resistance is adopted merely to provide a system-
atic way of going from one impedance expression to the next, and is not intended to
raise any questions concerning the physical construction or characteristics of such a
device. The purposes of the present section are served if we take the impedance
expressions one at a time without regard to any physical relation between them.

t That is, it still meets the passive requirements and could be represented by some
network including only positive passive elements.
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circuit can, however, be obtained by adding an appropriate negative

resistance in series with the early Z's, or either a negative or a positive

resistance in series with Z4. Thus if we add +2 to Z4 the result is

Sp2 + p - 2
Z

> = V-2 •
(7
"18)

This has zeros at p = —0.74 and p = +0.54 and therefore represents an

unstable structure.

The same set of rational expressions can also be used to exemplify the

other network functions. For example, if we regard the various Z's as

representing transfer rather than driving point impedances, we can imme-
diately classify Z\, Z2 , and Z3 as physically realizable expressions of the

minimum phase type. Z4 is physically realizable but non-minimum phase,

since it includes a pole in the right half-plane, while Zs is non-physical.

The chief differences occur in the application of the passive network con-

ditions. For the transfer impedance case, the vanishing of the real com-
ponent on the real frequency axis, as exemplified by Z2 , is no longer a

matter of particular significance. We are interested, on the contrary, in

the minimum absolute values of the various functions on the real frequency

axis. For example, it is readily shown that the minimum absolute value of

Z2 at real frequencies is 0.19. This means that the maximum current flow-

ing in the load in response to a unit generator in the source will be

1/0.19 = 5.29, so that if we represent the load resistance by Rj the corre-

sponding power is 28.0i?y. The maximum power obtainable from a unit

generator is however 1/4*;, where R{ is the internal resistance of the
generator. The passive network condition therefore demands that

28.0*, < ^. (7-19)

Z2 as it stands will therefore represent a passive function if /?,• and Rj are

sufficiently small. In other cases it can be made into a passive function by
multiplying it by a suitable constant.

If the rational functions are taken as return differences, the first four

Z's represent physically realizable expressions, although Z4 corresponds to a

network which would be unstable if the prescribed W vanished. If the
expressions represent sensitivities the situation is still simpler, since there is

no limitation even on the zeros of this function, and all five expressions can
be regarded as physically realizable.

7.10. Energy Relations in a Passive Network

As the final step in this discussion, we will turn to the consideration of the
three special conditions on passive networks which were postulated, with-
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out proof, near the beginning of the chapter. Since the distinctive feature

of a passive network is the fact that it does not contain a source of power,

an obvious point of departure in establishing these conditions is found in a

study of the power and energy relations in the circuit.*

The instantaneous power dissipated in any one resistance R in the struc-

ture is i
2R, where / is the instantaneous current flowing through the element.

Similarly, the instantaneous energy stored in the magnetic field of an

inductance is \i
2
L, while the instantaneous energy storage in a condenser is

2?
2
jD, where q = / i dt is the charge on the condenser. Each of these

quantities must be positive if the corresponding R, L, or D is positive and

in a network containing only positive elements the total stored energy or

dissipated power must therefore be positive for any choices of the instan-

taneous i's and ^'s. This is the fundamental condition upon which the

analysis is based.

The expression of the total stored energy or dissipated power directly in

terms of the individual elements of the network is not very useful, princi-

pally because none of our other formulae are stated in these terms. It is a

comparatively simple matter, however, to construct alternative power and

energy formulae in terms of the coefficients in the mesh or nodal equations.

We may begin, for example, with a set of differential mesh equations similar

to (7-1), except that the equations will be referred to the steady state

condition by introducing the instantaneous voltages e\, • • •, en on their right-

hand sides. Let it be supposed that the first equation is multiplied by i\,

the second by i2 , etc., and that the equations are then added. The result is

r,«=n r,8=n J: r,s=n r=n

EE RrJria + T.T, Lrs ir ~J + EE DTS iTqs = E <?r*V (7-20)
r,8=l r,«=l Q* r,s—l r=l

where the first summation, for example, represents a series of terms of the

form

-^11*1 + ^12*1*2 + • • • + Rlnhin + ^21*2' 1 + ^22*2 + " " " + RnrJnt

and qB in the third summation has been written, for brevity, in place of

J i8 dt.

On the right-hand side, each term of the form eTir is evidently equal to

the instantaneous power fed into the circuit by the rth generator, so that

the summation gives the total instantaneous power supplied to the circuit

* The method given here is a paraphrase of the standard dynamical treatment of

small oscillations. See, for example, Webster's Dynamics, Chapter V, or Whittaker

Analytical Dynamics, Chapters II and VII.
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from the outside. The first summation on the left-hand side must repre-

sent the instantaneous power dissipated by the resistances, since it is the

only term which would be present in a purely resistive network. It

can be written as twice* the " dissipation function " F, where F is defined

by

F=hT, £ RrJrh- (7-21)
r=ls=l

The remaining terms on the left-hand side represent the rates of change
of the stored energies associated with the coils and condensers of the net-

work. For example, if r = s in the second summation we can write the
corresponding term as LTTir (dir/dt) = (d/dt) \L„%. If r j± s we may make
use of the fact that since this is a passive circuit we must have Lra = LarA
The sum of the corresponding rs and sr terms can therefore be written as

, /.<#». • di\ d d 1 .Lrs \t r -j
t
+t

°Tt)
= Lr

* It
(M' }

=
It 2

(Lr°'rh + L°ri>ir) -

Evidently, the complete second summation becomes dT/dt, where T is the

stored magnetic energy and can be written as

T = i t. E Lniri.. (7-22)

In the third summation it is convenient to set ij = dqj/dt. Following the
procedure just used, this allows us to write the summation as dV/dt, where
V represents the stored energy in the condensers and is given by

=n 8 =

lEE r>raqrqs . (7-23)

The essential result of this discussion has been the development of the
expressions for the quadratic forms F, T, and V, as given by (7-21),

(7-22), and (7-23). It follows from our previous discussion that in a net-
work composed only of positive elements, F, T, and V must all be positive.

Moreover, we can regard the individual »'s and q's as assuming arbitrary

values in making this statement, since we began with arbitrary generators
in each mesh. F, T, and ^must therefore remain positive if we assign the

* The factor two is introduced arbitrarily to secure symmetry with the functions
considered later. The use of the symbols F, T, and V for the energy functions follows

standard dynamical usage. There should be no confusion with the other meanings, of
return difference, return ratio, etc., assigned to the same symbols, since the energy
function discussion is not continued beyond the present chapter.

t The use of the reciprocity condition here and in later sections should be noticed
particularly, since it explains why this type of analysis is restricted to passive networks.
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*'s and ^'s any other values whatever, positive or negative, and can vanish
only if all the **s and q's vanish.* In mathematical language the three

functions are positive definite.

The positive definite conditions can best be understood as a set of
restrictions on the values which the mesh coefficients RTS , Lrs , and Drs can
assume if the system of mesh equations as a whole is to correspond to a.

passive network. Suppose, for example, that all the i's except
*'i were

chosen equal to zero. F would reduce to |i?n«'f. The positive definite

condition evidently requires that Ru > 0. Similarly, all the other coeffi-

cients of the type Rjj, Ljh or Bjj must be positive. If the energy functions
included only " self " coefficients of this type, as they would if they repre-

sented sums of powers and energies for the individual physical elements,
this would be the whole story. Account must, however, also be taken of
coupling terms such as Rr,iria , where r ^ s. Whatever the sign of RTS

may be, this term may evidently be made negative by proper choice of the
signs of ir and /,. The positive definite condition therefore requires that
the absolute values of such mutual coefficients as Rrs be not too great
in comparison with the self coefficients. An example is furnished by the
function

F = i\ -+ khi2 + it (7-24)

If
|
k

J
< 2, this expression is positive for all real values of /'i and i2 , as we

can see most easily by setting the expression equal to zero and noticing that
the roots, in terms of ii/i2 , must be complex. For other values of k, how-
ever, the expression may be made to cross zero and become negative by
varying ix /i2 appropriately. For \k\ > 2, therefore, the expression is no
longer positive definite. With more than two i's the situation is more
complicated but the essential pattern of relationships is preserved. In
general, the self and mutual coefficients obey the same laws as the self and
mutual inductances in a set of coils with physically realizable coefficients

of coupling, as we might expect, since both conditions reflect a positive

energy requirement.

7.1 1. Impedance and Energy Relations at Real Frequencies

With the development of expressions for the functions F, T, and V we
are prepared to prove the three special conditions on passive networks
postulated near the beginning of the chapter. The present section will

consider only the second and third of these conditions.

* The last part of this statement is intended as a characterization of networks in

general, and may have exceptions in special cases. For example, if the first mesh
includes no inductance the stored magnetic energy will evidently be zero for any choice

of ii, as long as the other i's vanish.
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Since the second and third conditions are stated in terms of steady state

characteristics, it is natural to begin with the ordinary steady state mesh
equations for the circuit. The analysis will be based upon a set of energy
expressions built up by multiplying each mesh equation by a corresponding
current and then summing all the equations, much as was done in obtain-

ing (7-20). One modification, however, must be made to take account of
the fact that since (7-20) was developed from the differential equations of
the circuit, its energy functions were expressed in terms of the true instan-

taneous currents and voltages in the structure. The I's and E's which
appear in a set of ordinary steady state mesh equations, on the other hand,
are merely complex quantities which are brought into the analysis when the

true currents and voltages are replaced by fictitious expressions of the type
Ije

pt and Ejept , in accordance with the conventions described in Chapter II.

This, however, still allows us to secure a meaningful result if, instead of

multiplying each mesh equation by the corresponding 7, we multiply it by
the conjugate of that I. If the equations are then added, the result appears

as

to EE LrjrIs + EE RrJrls + ~Zi: DrJrl, = E1I1 (7-25)
r,s=l r,s=l *W r,s=l

where p has been replaced by iio since we are interested only in real fre-

quency characteristics, and Ij represents the conjugate of 7y. Only the

single generator Ex is included, in order to state the eventual result in terms
of the impedance seen in the first mesh.

Since the I's in (7-25) are not functions of time the three summations
cannot represent the actual instantaneous physical energy functions. The
summations can, however, be identified term-by-term with multiples of
the time averages of the corresponding terms in the true energy expressions.

To show this, we may begin by considering a " self "-inductance term such
as LiJJi. Upon replacing 7i and h by Ila + illb and 71o - /716,

respectively, this term becomes Z,n (7?a + l\b). The corresponding term
in the expression for the true electromagnetic energy of the circuit is

2-^n^i > where 7* represents the instantaneous physical value of the first

mesh current. It follows from the definition of 7i, however, that

7i = Real component of (7lo + tin,) (cos cot + / sin cot)

= I\ a cos cot — 716 sin u>t.
'

This term in the true electromagnetic energy can therefore be written as

jLnTf2 = \LX \ (l\a cos
2

to/ — 27ia716 sin tat cos ut + Tfi sin2 cot). (7-27)

If we average this expression over a long period of time, the sin cot cos cat
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term disappears while the cos
2

cot term and the sin
2

cot term each becomes \.

The average value of the electromagnetic energy due to the flow oil* in Lu
is therefore

(i£ii/i*
2
)av = Kll Via + lit) (7-28)

which is just J of the value found for the term Lulxli in the first summation

of (7-25).

Similarly, when we examine a pair of " mutual " inductance terms of

(7-25), such as L12I2I1 + L21I1I2, we readily find, with the help of the

relation L12 = Z.21, that they may be written as 2Li 2 (Iial2a + Iiblzb)-

The corresponding term in the expression for the true electromagnetic

energy is

i(L12/1
*/

2
* + L2JW) = L12[haha COS

2
cot

— (I\aJ2b + haJib) sin cot cos cot + Iibl2b sin
2

cot] (7-29)

whose average value is \L\2ViaIia + Iibl2b)- This is again just J of the

amount given by the summation of (7-25). We conclude, therefore, that

when all the terms of this summation are evaluated they will represent four

times the average value of the total electromagnetic energy T, taken over

a long period of time.

Obviously the second summation of (7-25) is in a precisely similar fashion

equal to four times the average value of the dissipation function F. The
third summation of (7-25) cannot be identified directly with a multiple of

the average value of the final energy function V since it depends upon
products^of currents, and if it were to represent V, the quantities should, on

the contrary, be charges. We may notice, however, that since a current is

the derivative of a charge, the effect of introducing a current in place of a

corresponding sinusoidally varying charge is to produce a shift in phase,

which is of no importance for averages taken over a long period of time, and

to multiply the expression by co. Since there are two Fs in the third sum-
mation, the introduction of currents for charges therefore increases its

value by a factor of go
2

, and we can conclude that the summation is equal to

4co
2 times the average value of the stored energy of the condensers.

Using the values just found for the three summations replaces (7-25) by

4icoT&v + 4Fav - 4/«raT = EJl (7-30)

Ifwe assume that the driving voltage £1 is of unit amplitude, the current I\

will be equal to the admittance of the network. Ix is, of course, the same
as I\ except for a change in the sign of the imaginary part. Equa-

tion (7-30) can therefore be used to furnish a relation between the energy

functions of the network and its input admittance. We find

Y = 4[Fav + ico(FaY - Tav )] (7-31)
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where F&vy V&v , and T&v , are to be evaluated under the assumption that the

network is energized by a voltage of unit amplitude.*

The second of the three conditions on passive networks postulated at the

beginning of this chapter is to the effect that the real component of a

driving point immittance is never negative at real frequencies. Since F
must be positive this is established immediately by (7-31). The third

condition states that the total power fed into the network by an outside

generator at real frequencies must be at least as great as the power con-

sumed by any one resistance. This can be shown by investigating the way
in which any individual element enters the expression for F. A simpler

method, however, is to suppose the given resistance removed and replaced

by a generator having a voltage equal to the drop across the resistance

produced by the prescribed external generator. This will leave the dis-

tribution of currents in the rest of the network unaltered. If we repeat the
analysis which led to (7-31) for the modified network driven by both
generators, however, the real component of the right-hand side of the result-

rJUUbn j—ll-—i

aaaaaaj
R Ro-vjlWLH J-'www-o

Fig. 7.6 Fig. 7.7

ing expression will still represent the average F for the modified structure

and must be positive or zero. Evidently, therefore, the power consumed
by the rest of the network cannot be negative, so that the total power con-

sumed by the complete structure must be at least as great as that consumed
by the prescribed resistance.

As examples of (7-31) we may take the networks of Figs. 7.6 and 7.7.

The impedance of the network of Fig. 7.6 is a pure resistance when the

inductance and capacity resonate. The average values of the energies stored

in the inductance and capacity must therefore be equal at this frequency.

The network of Fig. 7.7 is equivalent to a pure resistance at all frequencies.

By the same reasoning, therefore, the average values of its T and V must
be the same at all frequencies. Both of these conclusions can, of course, be
readily checked by calculation.

* " Unit amplitude " here means that the maximum value of the sinusoidal wave
representing the voltage is unity. Since we are dealing with energy, it is perhaps more

natural to use the rms or " effective " emf, which is 1/V2 times the maximum value.

If we use a unit effective voltage, therefore, the constant 4 in the right-hand side of

(7-31 ) should be replaced by 2.
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7.12. Stability of Passive Networks

The first of the three special conditions on passive circuits mentioned

near the beginning of the chapter states that a passive circuit is always

stable. As the final step in this analysis we will prove that this is a conse-

quence of the fact that the three energy functions F, T, and V, of a passive

network are positive definite. The relation between stability and energy

arises, of course, from the fact that it takes energy to set a circuit into

motion and that, generally speaking, the greater the disturbance the greater

the energy. It might appear at first sight from this argument that stability

will be assured from the positiveness of F alone, since if F is positive the

circuit as a whole will lose energy continuously, whatever the sign of T
and V may be. In fact, however, the positiveness of T and V is equally

important. If one of these functions may be negative the circuit may lose

energy through I2R losses continuously and still remain very far from its

position of equilibrium provided more and more negative energy* is stored.

Insolvency is no bar to a spendthrift life as long as one's credit at the bank
is good.

The relation between stability and the energy functions can be developed

most easily if we return to the set of equations given by (7-2) of the present

chapter. These were identical with the ordinary mesh equations except

that the driving voltages were set equal to zero and p was supposed to

assume one of the special values corresponding to a transient oscillation in

the network. Upon treating the equations by the processes used in

developing (7-25) the result is readily seen to be

?EE LrJrl. + EE RrJrh + - EE Drjrl. = (7-32)
r,s=l r,s=l P r,s=l

which is the same as (7-25) except that the right-hand side has been set

equal to zero and ioi has been replaced by p since transient oscillations are

not necessarily restricted to real frequencies.

In the previous discussion we identified each of the summations of

(7-32) with the average value of one of the energy functions of the network.

We cannot make the same identification here, since if the frequency is

* If a " negative energy " is difficult to visualize, we may suppose that the circuit

under consideration is a passive structure except for the inclusion of the equivalent

of a negative inductance, provided by means of one of the vacuum tube circuits

described later. As long as the negative inductance is taken as an entity the complete

circuit can still be analyzed by the methods used for passive structures, since the prin-

ciple of reciprocity is maintained. The " negative energy " stored in the inductance,

however, can be regarded physically as positive energy drawn from the vacuum tubes

and transmitted to the rest of the circuit.



STABILITY AND PHYSICAL REALIZABILITY 133

complex the physical currents in the network will be increasing or decreas-
ing and there is no good way of taking a time average. Fortunately, how-
ever, no such precise physical interpretation is necessary. It will be re-

called that when Ix in (7-25) was replaced by its value in terms of Ila and
lib the Lu term of the first summation became Ln (l\a + l\b). Similarly,
the sum of the L12 and L21 terms became (L12 + L2X ){IlJ2a + IlbI2b).
Both the " self " and " mutual " inductance terms therefore broke up into
the sum of two terms, one involving products of the Ia's and the other,
products of the Ib's. Corresponding results, of course, held for the R and
D terms. Even without the help of a physical interpretation of the sum-
mations, therefore, we can rewrite (7-32) in the same way as

r,s=n

P EE Lrs (IraIsa + IrbIsb) + EE RrsVrJsa + Waft)
r t8=l r,s=l

1 r,s=n

+-EHDrs (Iralm +IM = 0. (7-33)
P r,s=l

The summation £E LraIrJsa is obviously twice the energy function T
r,s=l

when for each instantaneous physical current we use the corresponding
quantity Ira. We can, therefore, represent this portion of equation (7-33)

r,s=n

by 2T(a). Similarly, the summation £E LrJrbIsb represents twice the

T function when each physical current is replaced by the corresponding Ih .

It can therefore be written as 2T(b). The other parts of equation (7-33)
represent in the same fashion twice the F and V functions when we substi-
tute the Ia's and Ib's for the corresponding physical currents and charges.
The complete expression can therefore be written as

p[T{a) + T(b)] + F(a) + F{b) + - \V(a) + V{b)\ = 0. (7-34)

The T's, F's, and V's which appear in (7-34) do not necessarily corre-
spond to any physical energies actually present in the circuit. They are
merely certain mathematical expressions secured by replacing the instan-
taneous currents in the true energy expressions by the I}a's and Ijb's. In
general, they may be expected to have different values as we go from one
possible transient to another, since the distribution of currents in the net-
work, and therefore the Ija's and I]b s, will depend upon the transient fre-

quency. However, we at least know that the original energy expressions
were positive for all possible values of the instantaneous currents. It
follows that the new Ts, F's, and Vs must be positive in all cases. Any p
corresponding to a possible transient must therefore satisfy a quadratic
equation like (7-34) in which all the coefficients are positive. From the
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usual formula for the roots of a quadratic we can readily deduce that per-

missible p's, or zeros of A, must satisfy the following conditions:

1. The zeros will be found at negative real values ofp if either Tor V\s
identically zero. In other words, impedances corresponding to networks

containing only capacities and resistances, or only inductances and resist-

ances, must have zeros on the negative real axis of p.

2. The zeros will be found on the negative real axis even if both 7" and V
are present provided F is sufficiently great. This means that very highly

dissipative networks will have negative real zeros even when both kinds of

reactive elements are present.

3. If .Fis identically zero, the zeros will occur on the imaginary axis. In

other words, the impedance of a non-dissipative network vanishes only at

real frequencies.

4. If none of these conditions is met, the zeros ordinarily occur in con-

jugate complex pairs. The real parts of the zeros are always negative.

These propositions are best exemplified by the discussion given in a later

chapter. They evidently contain much more detailed information than is

provided by the bare statement that a passive network must be stable. It

is clear, however, that among them they at least confirm that statement.

7.13. Comparison of Criteria of Physical Realizability

The preceding discussion has developed the properties of physically

realizable structures from a variety of criteria. In dealing with passive

structures, for example, we began with the statement that the circuit could

contain only positive elements and later replaced it by the statement that

its energy functions must be positive definite. In dealing with active

structures, on the other hand, we relied chiefly upon the postulate that a

physical circuit must be stable. As they stand, these criteria are not

readily compared directly, chiefly because the formulae for the energy

functions were developed on the assumption that the circuit met the reci-

procity condition Z;y = Z,;, so that they are not easily extended to the

general case. To put the criteria on the same footing, it will be assumed

that the active elements appear only as parts of negative impedance

devices, so that if these devices are taken as entities the circuit can be

regarded as made up exclusively of bilateral elements.* It is then readily

seen that the various criteria are not logically equivalent. As the list was

* Cf. the discussion in an earlier footnote. In accordance with the assumption

made here, the word " element " in the present section will be taken to mean a bilateral

element.
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given, the criteria appear in the order of diminishing severity. In other
words, a network all of whose elements are positive always has positive

definite energy functions and a network with positive definite energy func-
tions is always stable. The converses of these propositions are, however,
not true. A network which is stable does not necessarily possess positive
definite energy functions, and a network with positive definite energy
functions is not necessarily composed exclusively of positive elements.
The fact that the positive energy condition is not equivalent to the posi-

tive element condition is easily seen in trivial cases. For example, the
energy condition will evidently be maintained if we add a negative resist-

ance either in series with an actual network containing an equal or larger

positive series resistance, or in series with an equivalent of such a network.
A more elaborate example is suggested by the equivalent Tof a two-winding
transformer. It will be recalled that the central branch of the T con-
tains a negative inductance representing the mutual coupling. The energy
stored in the inductances as a whole, however, is always positive. Evi-
dently the energy would still be positive if we replaced the transformer by a
corresponding arrangement of three separate positive and negative induct-
ances. The energy conditions will also be fulfilled if, instead of using
inductances, we insert positive and negative impedances of any description
in the same ratio. On the other hand we will be able to show that any
impedance function meeting the requirements derived from the energy
conditions can always be represented by some network containing only
positive elements together with systems of ordinary mutual inductances.
In this sense, therefore, the energy conditions and the positive element
conditions are equivalent.

The relation between the conditions that the network be stable and that
its energy functions be positive definite is less easy to understand. If the
network includes only two kinds of elements, it can be shown that it will be
stable only when both associated energy functions are positive definite.

When all three kinds of elements are present, however, the positive definite

condition is not necessary. This may be exemplified by means of the
illustrative impedance formulae given by (7-17). For example, the last

two of these represented impedances which met the stability requirement
but had real components which were negative in some portions of the real

frequency spectrum. Evidently in such impedances the positive definite

condition does not apply to the dissipation function F. We may also
recall that, in order to restrict the location of the poles of impedance, it was
necessary to suppose that the structure would be stable when its driving
point terminals were open-circuited. Since positive definite energy func-
tions remain positive definite when the current in the driving mesh is set
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equal to zero, open circuit stability is assured when the energy conditions

are met. As such examples as Z4 of (7-17) show, however, open circuit

stability is not a property of all structures which are stable under their

nominal operating conditions, so that this represents another way in which

a stable structure which does not meet the energy conditions can be

obtained.



CHAPTER VIII

Contour Integration and Nyquist's Criterion for Stability

8.1. Introduction

The analysis of the preceding chapter consists, in essentials, of an

investigation of the restrictions which must be placed upon the zeros and
poles of the several network functions if the structure is to be stable under
various conditions. This is obviously a necessary first step in attacking

the general problem of determining the characteristics obtainable from
physically realizable structures. Of itself, however, it is of limited utility.

Its chief limitation is the fact that the restrictions are stated in terms of the

behavior of the function at complex frequencies, while for practical design

purposes only the real frequency characteristics are ultimately of interest.

As the situation stands, the relations between the two are too indirect to be
of much value. For example, it is not very clear from the restrictions on
the zeros and poles just what sorts of real frequency characteristics are

physically possible. Moreover, if we have a known structure, whose com-
puted real frequency characteristics are satisfactory, it is a long and tedious

process, in general, to determine whether the roots of A meet the stability

requirement. If some of the roots turn out to be in the wrong side of the
plane we are still at a loss to know whether we have merely made an un-
fortunate choice in some unimportant feature of the design or whether the
result is inevitable in any circuit having the desired type of behavior.

What we evidently need in order to bring the analysis to a useful con-

clusion is some mathematical tool by means of which the restrictions on the
behavior of network functions at complex frequencies can be transformed
directly into equivalent restrictions on their behavior at real frequencies.

The real frequency axis can be looked upon as the boundary of the right

half-plane, which is the region in which special restrictions on the network
functions occur, so that the broad mathematical problem is that of relating

the behavior of a function inside a given region to its behavior on the

boundary of the region. The most useful tool for this purpose is found in

Cauchy's theory of analytic functions in terms of integrals around closed

contours. This chapter is intended primarily as a sketch of some of the
elementary aspects of this theory.* The most extensive applications of

* For supplementary reading, reference may be made to any book on the theory of
functions of a complex variable. Particularly good accounts are found in Goursat
Townsend, or Pierpont.
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the material are made several chapters later, after an intermediate discus-

sion of the general properties of driving point and transfer immittances.

The theory is exemplified in the present chapter by a discussion of the

Nyquist diagram method of determining stability. The chapter also

includes two specific theorems which are useful in the discussion of driving

point and transfer immittances given in the next few chapters. The analy-

sis relies upon the general framework of ideas given by Chapter II, and this

material should be reread if necessary before the present chapter is under-
taken.

8.2. Integration in the Complex Plane

In ordinary calculus we are familiar with the conception of an integral as

the area under a curve. Figure 8.1, for example, shows the approximation

to the area under a given curve by means of a number of thin vertical strips.

We say that the integral of the function from Xi to x2 is equal to the limit

tr-f(x)

Fig. 8.1 Fig. 8.2

approached by the area of the strips when the number of strips becomes
indefinitely great and each one is made indefinitely thin. The area of any
strip, such as the shaded one in the figure, however, is evidently equal to its

height times its breadth or, in other words, to /(#,) (xj+1 — Xj). This
definition of an integral can therefore be expressed by the equation

i f{x)dx = lim E/(*y)0o+i - Xj). (8-1)

Integrals of functions of a complex variable are defined in a precisely
similar way. If we suppose, for example, that the function /(z) is to be
integrated along a prescribed curve running from Zi to z2 in the complex z

plane, as shown by Fig. 8.2, we may begin by choosing a number of inter-

mediate points, Zj. For any given choice of the intermediate points we can
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set up the corresponding sum X) /(zy) fe+i — z,). The integral, then, is

defined as the limit* approached by this sum when the number of points of

division is made indefinitely great and the successive points are brought
indefinitely close together. In other words, the integral may be expressed

by
nz2

f
f{z)dz = lim £/(zy)(z,-+i - Zj).

«/2,
(8-2)

It will be seen that this is formally similar to equation (8-1). The only

difference lies in the fact that since /(zy) and (zy+1 — z}) will in general be
complex quantities, the final result will ordinarily be

complex.

8.3. Integrals in Limiting Cases

The definition of an integral given by equation

(8-2) leads immediately to a simple consequence

which we will use repeatedly in later discussion. We
observe from (8-2) that the absolute value of the

integral cannot be greater than the sum of the

absolute values of all the component terms,

f(zj)(zj+i
— Zj). Now suppose that M represents

the largest absolute value of /(z) over the path con-

sidered. The absolute value of each of the component terms can be no

greater than the absolute value which would be obtained if/(z
; )

were re-

placed by M. We therefore have

f
%

/{z)dz \< f*M\dz\ = MX path length. (8-3)

As an example of this relation, let it be supposed that the path of inte-

gration is the semicircle with radius R shown by Fig. 8.3, where it is sup-

posed that R can be made indefinitely large. The path length is icR.

If/(z) varies as some positive power of z for very large values of z, we can

evidently say nothing about the integral on the basis of equation (8-3)

since bothM and the path length will become very large as R becomes large.

Equation (8-3) also fails to provide a limit if/(z) approaches a constant

value other than zero as z approaches infinity. On the other hand, if/(z)

varies as some negative power of z, such as z~2 , M must vary as R~2
.

We see from equation (8-3) that the integral must therefore Vanish for a

sufficiently large value of R in spite of the fact that the path length is

* This discussion, of course, ignores such questions as the demonstration that the

limit exists, for an appropriate/(z), and that it is independent of the precise choice of

the z/s, which would require consideration in a formal analysis.
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indefinitely great. The same result, of course, holds if/(z) varies as any
larger negative power of z.

If the semicircle of Fig. 8.3 is supposed to be very small, rather than very

large, essentially similar results are secured. The path length now vanishes

in the limit, so that it is clear from (8-3) that the integral also vanishes if

/(z) either approaches a constant value or behaves as any positive power of

z near the origin. If/(z) behaves as z~2 , or as any larger negative power of

z, on the other hand,M increases so rapidly as R diminishes that we can

say nothing about the integral on the basis of (8-3).

In both situations, an intermediate case occurs if/(z) varies as z~1
.

When the semicircle is very large this gives an M which diminishes as the

path length increases, while when the semi-

circle is small M increases as the path length

decreases, the relative rates of increase and
decrease being such that in either case the

product of the two is a constant. Equation

(8-3) thus gives a finite upper limit to the

integral, but we are not sure just what its

exact value may be.

This situation can be treated by specifying

z in terms of a polar angle 8, as shown by
Fig. 8.4. For the sake of generality the path

is shown as an arbitrary arc of a circle, with

end-points at = d\ and = 2 , rather than

If we write z = Re*
e we evidently have

Fig. 8.4

as a complete semicircle

dz = iRe^dd, so that the integral from 0i to 2 becomes

J
%dl _ /

iRe de - c
c z «/fl Re1 J

e

ide = -i{ex - e2 ), (8-4)

while if the integral is taken in the other direction the result is evidently

the same except for a reversal in sign. We thus have the

Theorem: The integral of z
—1

over an arc of a circle centered at the

origin is +* or — / times the central angle of the arc, in

radians, accordingly as the integration is taken in a counter-

clockwise or in a clockwise direction.

The importance of these results lies in their utility in evaluating integrals

in many limiting cases. For example, in future discussion we will have fre-

quent occasion to consider the integrals, over a very large semicircle, of func-

tions which behave near infinity like (A-i/z) + (A- 2/z
2
) + (A- 3/z

3
) H .

Evidently if the semicircle is sufficiently large we can discard all the
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terms in this series except the first and evaluate that one by means of

the theorem just given.

For purposes of future analysis this discussion requires amplification in

one particular. We have thus far merely rejected cases, for either the very

large or very small semicircle, in which/(z) varies as such a power of 2 that

the product M X path length becomes indefinitely large as the limiting

case is approached. We can draw no conclusions about such situations

from (8-3) alone, and nothing significant can be said, in fact, as long as the

path of integration is an arbitrary arc of a circle. In the following sections,

however, there will be occasion to consider paths of integration extending

around a complete circle and back to the starting point. This gives a

particularly symmetrical situation for which the integral can be much
simplified. To show this, we may repeat the analysis of (8-4), replacing

z
_1

by z™ and the upper and lower bounds of integration by —
tt and ir.

This gives

f zVz = f [R^e^iRe^de
Jo Jw

= iRn+1 f [cos (» + 1)0 + / sin (n + \)8]dd. (8-5)

If n is any positive or negative integer except — 1 these expressions must
vanish since the integral of either a sine or a cosine over a complete cycle is

zero. If n = —1 the result is —2iri, for the clockwise direction of inte-

gration indicated, as we can see either from (8-5) or by the preceding
theorem. We therefore have the

Theorem: The integral of z" around a complete circle centered at the

origin is zero unless n = — 1. If n = —1 it is — 2W for

integration in a clockwise direction and 4-2« for integra-

tion in a counterclockwise direction.

8.4. Relation between the Integral and the Path of Integration

In spite of the parallelism which exists between the definitions of real

and complex integration as indicated by equations (8-1) and (8-2), one
difference exists which has not been previously emphasized. In defining

the real integral in equation (8-1) it was sufficient to give the integration

limits X\ and x%, since it was clear that the points x, were necessarily taken
on the x axis between these limits. For the complex variable z, on the

other hand, it was necessary to specify not only the limits zx and z2 but also

the particular curve between those limits on which the points of subdivision
Zj were supposed to be chosen. The question naturally arises whether the
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choice of the path between z\ and z2 is significant or whether the same
result would be secured if we connected Zt and z2 by some different path,

as shown by Fig. 8.5.

This question is answered by an important theorem, due to Cauchy,
which is sometimes called the " Principal Theorem ofAnalysis." Cauchy's

theorem states that the integral between Zi and z2 will be the same for

either of the two paths provided the function to be integrated is analytic on

both paths and in the intermediate region

bounded by the paths. In most circum-

stances it is convenient to replace the con-

ception of an integration from Zi to z2 along

two different paths by the conception of an

integration around a complete closed loop

and back to the starting point. In Fig. 8.5,

for example, we might regard the loop in-

tegration as composed of a forward integra-

tion from z\ to z2 along path A and a back-

Fig. 8.5 ward integration from z2 to z\ along path B.

Clearly, however, the integral from z2 to Z\

along B must be the negative of the integral from zi to z2 along B. It must
therefore also be the negative of the integral from Zj to z2 along A, if the

integrals from Zi to z2 along the two paths are equal. Cauchy's theorem

can consequently be stated in the following words:

Theorem: If a function /(z) is analytic within a closed curve and also

en the curve itself, the integral of/(z) taken around that

curve is equal to zero.

This theorem will be assumed here without proof.

Cauchy's theorem is readily illustrated by our preceding discussion of the

integration of powers of z on circular paths. Let it be supposed, for

example, that the closed loop is taken as a circle about the origin and that

/(z) is chosen as the polynomial A + Aiz + • • • + Anz
n

. Then /(z) is

analytic on and within the circle so that according to Cauchy's theorem the

integral around the complete circle must vanish. This is, of course, verified

by the preceding discussion, which showed that the integral of each term in

the polynomial vanishes.

We may next suppose that the term k/z is added to the polynomial.

This additional term produces a pole at the origin so that the function is no
longer analytic at all points within the circle and the conditions of Cauchy's

theorem are not met. Correspondingly, we find from our preceding dis-

cussion that the integral no longer vanishes, but becomes 2irik, if the inte-

gration is supposed to take place in a counterclockwise direction. On the
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other hand, if we were to add k/z2 , rather than k/z, to the polynomial the
loop integral would remain zero, although the new function would still not
be analytic at the origin. It thus appears that the converse of Cauchy's
theorem is not true. In special cases the loop integral may be zero even
though the function is not analytic at all points

within the contour.

In these examples the closed contour has been C t [ , B
taken as a circle. This, of course, is a partic-

ularly easy path for purposes of computation.

It is important to notice, however, that

Cauchy's theorem shows that the same results

would be secured if the circle were distorted &
into a path of any other shape. To illustrate

this, we will consider the integral of z
2 around

the square path shown in Fig. 8.6. The side Fig. 8.6

of the square is taken as 3 units and the

corners A, B, C, and D as 1 — /', 1 + il, —2 + il, and — 2 — /', re-

spectively. If we write z = x + iy, z
2 becomes x2 — y

2 + lixy. On the
side AB we have * = 1 and dz = idy. This portion of the complete loop

integration can therefore be written as

£ zVz = L x
[(1

~ y2) + 2iy]idy - (8-6)

This can be evaluated by the methods of ordinary calculus and is equal to

—3. Similarly, over the sideBCwe have y = 2,

dz = dx, and the integral becomes

r^-x' [{x
2 - 4) + Aix]dx

= 9 + 6i. (8-7)

The integrals over the remaining two sides can
be treated in the same way and are equal re-

spectively to — 6 — 9i and 2>i. The sum around
the complete loop is easily seen to vanish, thus

confirming Cauchy's theorem for this case.

In future discussion, Cauchy's theorem will

be applied chiefly to closed loops in the p
plane of the type shown by Fig. 8.7. The
loop consists broadly of a large semicircle in

the right half of the p plane closed by a diameter lying on the real fre-

quency axis. The small indentations away from the real frequency axis

Fig. 8.7
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are supposed to be very small semicircles introduced to avoid any singu-

larities which may be found there. The integral around the complete

path will be represented by the symbol j> and the integral around the

large semicircle by the symbol $ .

This path is chosen because our previous discussion on the location of the

zeros and poles of physically realizable network functions can readily be

converted into a specification of the analyticity either of the network

functions themselves or of certain derived functions in the right half of the

p plane. Cauchy's theorem can thus be used in studying the integrals of

these expressions around the complete loop. If we suppose that the path

is very large, however, the integrals around both the large semicircle and

the small indentations can be dismissed easily by means of the methods

described in a preceding section. What is left, then, is an integral along

the real frequency axis from some very large negative frequency to a corre-

spondingly large positive frequency so that Cauchy's theorem allows us to

relate the real frequency characteristics of the structure directly to the

conditions of physical realizability.

8.5. The Calculus of Residues

Before studying these possibilities in detail, it is desirable to consider

briefly what happens to the integral of a given function around a closed

path when the function is not analytic inside the path. The results have

already been suggested by the examples given previously. To study the

general case, suppose that the function is analytic except for a simple pole

at za so that near za it can be expanded in the form*

/(2) = J=±- + A + A& - Za) + A2 (Z - Za)
2 +: (8-8)

z - za

Now choose the path of integration shown by Fig. 8.8. The function is

analytic within this closed path so that the integral around the complete path

* The series in (8-8) is introduced here as a convenient way of characterizing the

behavior of the function in (he neighborhood of z„. From the point of view of pure

mathematics its use is somewhat illogical, since the justification for such an expansion

depends upon an analysis of the type under consideration at present. We may notice,

however, that all we really need to know is that/(z) can be represented as the sum of

the first term in (8-8) and a remaining portion which is bounded in the neighborhood

of z„. This is readily established from the definition of a pole. It follows from

(8-5), however, that the integral of the bounded portion around a very small circle

near Zo can be ignored, so that the correct result is secured without using the com-

plete expansion.
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must be zero. The contributions of the integrations along the path between

Pi and P2 in each direction, however, evidently cancel out. The integral

around the outside loop from P x back to Pi again must therefore be the

negative of the integral around the small inside circle enclosing the point z .

If we integrate /(z), as given by

(8-8), around this small circle,

however, all the terms except the

first must drop out, while if we
transfer the origin to za the first can

be evaluated by the methods of

equation (8-4). We therefore find

that the integral around the outside

loop is given by*

<f/(z)dz = -2W^/_i. (8-9)

The coefficient A_\ is called the

residue of the function at the pole Fig. 8.8

za . If there are a number of poles

in the interior of the loop, then by a continuation of the same process we

can include them one by one, thus securing in general, an expression of

the form

/f{z)dz = -2*i[A_x + P_i + C_i + h ALiJ. (8-10)

Since equation (8-5) shows that only simple poles have integrals different

from zero around small circular paths enclosing them, only the coefficients

of the first order poles at any point should be considered in building up an

expression such as (8-10).

Illustrations of the calculus of residues can be obtained by using the same

material as was previously employed to illustrate the general Cauchy

theorem. Since the fact that the integral of 1/z over a small circle about the

origin is equal to 2iri was used in establishing (8-9) and (8-10), we are

perhaps not justified in regarding this result as an illustration. We can,

* It is important to notice that the negative sign in the right-hand side of (8-9)

appears because of the direction of integration (clockwise around the outer loop)

which is chosen in Fig. 8.8. It is convenient to choose this direction here because it

leads to a positive direction of integration along the real frequency axis when we

eventually apply the result to contours of the type shown by Fig. 8.7. In most treat-

ments of the Cauchy integral, however, the loop integration is conventionally taken

in the opposite direction, so that the equation corresponding to (8-9) appears without

the minus sign.



146 NETWORK ANALYSIS Chap. 8

however, at least exemplify the fact that the result is independent of the
shape of the path by considering the integral of the same function around
the square contour of Fig. 8.6. Setting z = x + iy, as before, we have
l/z= [x/(x

2 +y2
)} - [iy/{x

2 +y2
)]. The integral from A to B is

readily written from this as

This can be evaluated by ordinary calculus and gives the result

| log 5 — % log 2 + i tan
-1

(2) - i tan
-1

(— 1). In the same way we find

that the integral from B to C can be written as

= \ log 8 - \ log 5 - i tan"1 (- 1) + * tan"1 (f ). (8-12)

Using similar methods, the results for the other two sides are found
to be, respectively, J log 5 - ^ log 8 - / tan

-1
(-1) + i tan

-1
(|) and

\ log 2 - | log 5 + i tan"1
(1) - i tan"1 (-2).

If theintegralsfor allfour sides are added together it is readilyseen that the

sum of the real components vanishes. The sum of the imaginary compo-
nents can be studied most readily by observing that each component sepa-

rately is equal to the central angle sub-

tended at the origin by the correspond-

B c'r ----.£' lnS side. For example, the imaginary

• • component i tan
-1

1 — i tan
-1

(—1)
1

' obtained from the integration along

' -yt...«*j

/

-dB is equal to the angle, in radians,

between straight lines drawn from

the origin to the corners A and B.

Fig. 8.9 Evidently, the total central angle

subtended by all four sides is one
revolution, or 27r radians. The complete loop integral is therefore 27r/.

This agrees with (8-9) if account is taken of the fact that the direction of
integration in the present instance is counterclockwise.

The fact that the imaginary component produced by integration along
each side is equal to the central angle subtended by that side is important,
since it indicates why the significant feature of the situation is not the exact
shape of the path, but the fact that the pole at the origin is inside the path.

Evidently, any slight distortion of the path would still leave the total

central angle subtended equal to one revolution, or 2-rr radians. On the
other hand, suppose that the path were translated without distortion to

some position such as A'B'C'D' in Fig. 8.9 for which it no longer included
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the pole at the origin. Then evidently the total central angle subtended

by all four sides would be zero, so that the loop integral would vanish.

An example of a different sort is furnished by one of the classical theorems

in the calculus of residues. Let g(z) be a function which is analytic on and

within a given closed contour and let q be any point within the contour.

Then g(z)/(z — q) is a function which is analytic in the same region except

for a simple pole at z = q. The residue at this pole must be g(q), the value

assumed by g when z = q, as we can easily see by expanding g(z) near this

point in the Taylor's series,^?) + g {q) (z — q) + (\/2\)g"(q) (z — q)
2

-\ ,

and noticing that after division by z — q the series takes the same form

as that given for/(z) in (8-8). If we identify g(z)/(z — ?) with /(z),

therefore, (8-9) allows us to write

/: dz = -2wig(q) (8-13)

where, as before, the integration is taken in a clockwise direction.

This theorem is of interest here because of its bearing on the general

problem of relating the values assumed by an analytic function within a

given region to its values on the boundary of the region, which was dis-

cussed earlier in the chapter. Evidently, if we know g(z) we can perform

the integration on the left-hand side of (8-13) and calculate the special

value g(q) directly. In order to make this possible, however, we need know
g(z) only on the path of integration, that is, only on the boundary. Equa-

tion (8-13) thus provides a method of determining an analytic function

anywhere inside a given region from a knowledge of its behavior only on the

boundary of the region. The problem with which we are actually con-

cerned is that of determining what properties a function must have on the

boundary of the region when it is known to have certain properties in the

interior. This problem is evidently in many respects the converse of that

solved by (8-13), although it is much more general, since we begin with a

specification only of the general properties of the function rather than with

a knowledge of its behavior in detail. On this account it is not possible to

present an adequate answer in terms of a single compact formula such as

(8-13). The range of questions of practical interest requires the develop-

ment of a considerable variety of formulae, only a few of which are given

in the present chapter. Except for these qualifications, however, the solu-

tion of the converse problem will be found to imply relations between the

values of a function on the boundary of a region and in its interior as

tightly knit as that given by (8-13).

8.6. Integral of the Logarithmic Derivative

For the immediate purposes of the present chapter, the preceding dis-
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cussion is valuable chiefly because it permits the development of a theorem
which is of direct interest for amplifier design. Let it be supposed that

/(z) is some given function which may, in general, have both zeros and
poles, but no singularities aside from poles, within some prescribed con-
tour. The object of the theorem is to determine, as far as possible, how
many zeros and poles lie within the contour from an inspection of the values
assumed by/(z) on the contour itself.

The theorem is developed from a study of the integral of the derivative of

the logarithm of the function. In other words, we let 6 = A+iB = log/(z),

and write

The integrand in the last expression of (8-14) will evidently be analytic

within the contour except possibly for points at which/(z) is either zero or

infinite. If we suppose that z represents one such point and that the func-

tion has an »th order zero or pole at z , we can write

/(z) = (z - zo)^(z),

/(z) = »(z - 2b)"-^(z) + (z - Zo)Y(z), (8-15)

/(*) _ n
|

g'(z)

/(z) z - z g(z)

where n will be positive if z is a zero and negative if z is a pole and g(z)

is analytic and not zero in the neighborhood of z . We thus see that

/ (z)//(z) has a simple pole of residue n at z = z .

The integral around the complete contour, as expressed by (8-14), must
be — 2iri times the sum of all these residues, if the integration is taken in a

clockwise direction. At the points for which/(z) is zero, however, n will be

positive and the sum of such residues is therefore equal to the total number
of zeros within the contour when each zero is counted in proportion to its

multiplicity. Similarly, at a pole n will be negative, and the sum of all such

residues will therefore be equal to minus the number of poles when multiple

poles are weighted according to their multiplicity. The complete equation

(8-14) must therefore be

' f'(z)J K
' dz = 2wi(P - N) (8-16)f/CO

where N and P are respectively the number of zeros and the number of

poles, and the integration is supposed to take place in the clockwise direc-

tion.

On the other hand, the first and second expressions in (8-14) are merely

the integrals of the derivative of 0, or A + iB, and can therefore be inte-
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grated directly. The result must be the difference between the initial and

final values of 6, or A + iB, as we go around the complete loop. Since the

right-hand side of (8-16) is pure imaginary, we have only to consider the

imaginary term iB. If we let 1 and 2 symbolize the initial and final points,

this equation consequently becomes

±\B\l = P-N. (8-17)

The relation expressed by (8-17) can be given a simple graphical inter-

pretation. If we represent /(z) on a complex plane of its own, the values

which/(z) assumes as z traverses the prescribed contour can be represented

as a moving point in that plane. But the left-hand side of (8-17) is l/2x

times the total change in the phase angle of/(z) as z itself travels around

the complete contour. Since It radians is one revolution, this is the same

as saying that the left-hand side of (8-17) is equal to the number of times

the moving point representing /(z) revolves around the origin in the/(z)

plane while z itself moves once around the path of integration. In order to

evaluate the left-hand side, therefore, we need merely plot the values of

/(z) which correspond to z's on the prescribed contour and count the num-
ber of loops of the plot which encircle the origin. The result given by

(8-17) can consequently be expressed as the following

Theorem: If a function /(z) is analytic, except for possible poles,

within and on a given contour the number of times the plot

of/(z) encircles the origin of the/(z) plane in the positive

direction,* while z itself moves around the prescribed con-

tour once in a clockwise direction, is equal to the number
of poles of/(z) lying within the contour diminished by the

number of zeros of/(z) within the contour, when each zero

and pole is counted in accordance with its multiplicity.

As an elementary example of this theorem, let it be supposed that

/(z) = z and that the contour of integration in the z plane is chosen either

as the unit circle or the square of Fig. 8.6. Evidently in this case the paths

traced out by the moving point in the/(z) plane are the same as these con-

tours in the 2 plane. They are shown by I and II in Fig. 8.10. Corre-

sponding to the fact that each contour in the z plane includes one zero

and no poles, each of these paths is traversed once in the clockwise direc-

tion as z moves clockwise once around the associated integration contour.

* The positive direction is, of course, that one for which the phase angle of/(z) is

increasing. In other words, it represents a counterclockwise encirclement of the origin

in the f(z) plane by the moving point.
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On the other hand, if/(z) = 1/z, the paths in the/(z) plane corresponding

to the circle and the square in the z plane are respectively the circle and the

curvilinear quadrilateral shown by I and II in Fig. 8.11. Each of these

paths is traversed once in the counterclockwise direction as z moves clock-

wise once around the associated z contour, corresponding to the fact that

f(z) plane

Fig. 8.10

each contour now includes one pole and no zeros of/(z). If we choose more

complicated expressions for/(z) the paths will, of course, ordinarily become
more complicated and may encircle the origin more than once. Such

situations, however, can best be illustrated by the examples given in later

sections.

As the preceding examples may suggest, the theorem on the logarithmic

derivative amounts, in simple cases, to a statement of a certain corre-

spondence between specified areas in the z and/(z) planes. Thus suppose

*-(>lane

Fig. 8.12

that the z contour is that shown by Fig. 8.12, and that it encloses one zero

and no poles of/(z), although zeros and poles may be found outside the

contour. The associated /(z) path must encircle the origin in the/(z)

plane once, as shown by Fig. 8.13. Then the theorem says, in effect, that
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in a certain sense the interiors of the two contours correspond to one

another. For example, there is, by assumption, one point in the interior

of the z contour of Fig. 8.12 at which /(z) = 0. Correspondingly, the

point/(z) = 0, or the origin in the/(z) plane, is found in the interior of the

contour in that plane, as shown by Fig. 8.13. Suppose, however, that we
were to choose any other point Zo inside the z contour. Then the new
function /(z) — /(zo) would still have a zero but no pole inside this con-

tour, so that its plot must enclose the origin in its own plane. The plot of

/(z) — /(zo) can be obtained from that of/(z) in Fig. 8.13, however, merely

by a translation of amourit/(z ), so that this result is only possible if/(z )

lies inside the contour in Fig. 8.13.* Thus every point in the interior of the

contour of Fig. 8.12 corresponds to some point in the interior of the contour

of Fig. 8.13.

If, on the other hand, the contour of Fig. 8.12 includes a pole but no zeros

we can show by an argument of the same type that any point in the interior

of the z contour must correspond to a point which is outside the contour for

/(z). Thus the interior of one contour corresponds to the exterior of the

other. This is manifested by the fact that the /(z) contour is traversed in

the reverse direction. As the number of zeros and poles in the interior of

the z contour is increased, these relations, of course, grow more complicated.

We must, in general, think of the interior of the z contour as being broken
up into several subregions, some of which correspond to the interior and
others to the exterior of the/(z) plot, or to the interior and exterior of
specified loops in the/(z) plot if the plot crosses itself several times.

8.7. Nyquist's Criterionfor Stability— Single Loop Case

The importance of the theorem just established arises from the fact that
it leads immediately to the familiar criterion for stability due to Nyquist.f
To show this, let the independent variable, which has hitherto been taken
as z, be represented by p. Let the integration contour be the path in the

p plane shown previously by Fig. 8.7. It will be supposed that this path is

made indefinitely large. We will let the function whose logarithmic

derivative is integrated around this path be the return difference F = A/

A

for one of the tubes in the circuit. It will be assumed that F has no

* The interior loop in Fig. 8.13 has been drawn to illustrate the fact that for special

values of/(z ) the plot of the new function /(z) — /(z ) may encircle the origin more
than once. Thus there may be more than one point inside the z contour corresponding
to a prescribed /(zo). This is evidently only possible when the/(z) contour crosses

itself. In other circumstances there is a one-to-one correspondence between the points
in the two interiors.

t Regeneration Theory, B.S.T.J., Jan. 1932. See also Peterson, Kreer, and Ware,
Regeneration Theory andExperiment, Proc. I.R.E., Oct. 1934.
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singularities on the real frequency axis so that the small indentations shown
by Fig. 8.7 can be ignored.

The Nyquist diagram for determining the stability of a circuit is in
essentials a plot of the values of F corresponding to p's lying on this con-
tour, prepared in the manner described in the preceding section. In draw-
ing the diagram, however, advantage may be taken of a number of simpli-
fying possibilities. In the first place, any physical tube must contain
parasitic plate-cathode and grid-cathode capacities which will short-circuit
the transmission path from plate to grid at extremely high frequencies.
This is equivalent to saying that the return ratio of the tube will vanish,
or its return difference will approximate unity, if p is made indefinitely
great. As we make the contour in Fig. 8.7 larger and larger, consequently,
the moving point which traces the path of F in the F plane will become
more and more nearly stationary as p moves around the semicircular part
of the complete contour. In the limit, this part of the contour can be dis-

regarded entirely so that the complete diagram becomes a plot of only the
real frequency values of F for the complete real frequency axis from
— oo to + 00 .

The second simplification arises from the even and odd symmetry,
respectively, of the real and imaginary components of F on the real fre-

quency axis, which was discussed in the preceding chapter. This makes it

necessary to compute the path in the F plane only for positive frequencies.
The half of the path which corresponds to negative frequencies can be
inserted as the mirror image of this part with respect to the real axis of
the plane.

The third simplification is perhaps more important than either of the
first two. The zeros and poles of F are respectively the roots of A and
of A . If we make the path of integration in Fig. 8.7 sufficiently large we
can suppose that all the roots in these two quantities which lie in the right
half-plane will fall within the contour. We can therefore determine the
difference between the number of roots of A and A which lie within the right
half-plane by counting the number of loops of the plot ofF which encircle

the origin. But the stability of the structure depends upon the location
of the roots of A only, so that counting the loops gives only ambiguous infor-

mation concerning the stability of the circuit unless we know how many
roots of A are included in the total. For the time being this difficulty will

be avoided by assuming that the circuit is known to be stable when the
prescribed W vanishes. This is true, for example, for an ordinary single

loop amplifier, which was the case actually considered by Nyquist in his

original treatment of the problem, since the failure of any one of the tubes
will open the feedback loop. In these circumstances A can have no roots

in the right half-plane so that the stability or instability of the circuit can
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be determined unambiguously from the Nyquist plot. Evidently the con-

dition for stability is that the plot shall not encircle the origin, while any

encirclements which do occur must be in the clockwise direction.

A number of illustrative plots are shown by Figs. 8.14, 8.15, and 8.16.

In each case the region of maximum F is taken as a band centered about

some point coo. As we go from coo to infinite frequency the return difference

must, of course, reduce to unity for the reasons mentioned previously. In

each drawing F is shown as reducing to unity at zero frequency also, since

plate supply coils and blocking condensers will normally interrupt the d-c

F itane

c
--

/f

—
">

~"

^/TV*00 ^Vfn
Y&

c^ V_J/
J)

plane

r*
X'' \

F plane

jh 6 A

Fig. 8.14 Fig. 8.15 Fig. 8.16

feedback path.* The portions of each plot corresponding to positive and to

negative frequencies are shown respectively by the solid and the broken

lines. The directions in which the plots are traced as w varies from — oo

to +» are indicated by the arrows. Evidently, Fig. 8.14 represents a

stable structure. Figure 8.16, on the other hand, represents a structure

which is unstable, with four roots in the right half-plane, since the plot

encircles the origin four times. At first glance, it may appear that the

structure of Fig. 8.15 is also unstable. It is easy to see, however, that the

net phase rotation of a vector connecting the origin to a moving point on
the path, over the complete contour, is zero, so that this structure is stable.

The foregoing description of the Nyquist diagram has been based upon the

return differenced asamatter of theoreticalsimplicity. Inpractice,however,

the diagram is usually plotted in terms of the return ratio T, or the loop

* By using special circuits, however, it is possible to provide a d-c return path, so

that maximum feedback can be assumed to occur over a band centered about zero

frequency. It is also often convenient to assume such a case, ignoring the power
supply elements, in analytic work in order to make use of the transformation from

symmetrical band-pass to low pass characteristics described in one of the following

chapters. The two examples given later in this section are of this type. Approxi-

mate illustrative characteristics can be obtained from Figs. 8.14 to 8.16 by omitting

the portions of each plot between — co and +&>o and identifying ±a>o with zero

frequency.
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transmission characteristic nff. Since F=l+T=l— ^3 the relations

among the three plots are easily ascertained. For example, Fig. 8.17
shows the diagram of Fig. 8.14 plotted in terms of T. It is the same as

Fig. 8.14 except for a translation one unit to the left. Figure 8.18 shows
the same plot in terms of m/3, and is the same as Fig. 8.17 rotated through
180°. In each figure the negative frequency characteristic has been
omitted for simplicity. Evidently a loop around the origin in the F

Fig. 8.17 Fig. 8.18

diagram is the same as a loop around —1,0 in the T diagram, or a loop

around 1,0 in the /*/? diagram. Calling these three the critical points,

therefore, the general result of this discussion can be summed up in the

Theorem: If a structure is stable when a given element vanishes, the

necessary and sufficient condition for it to remain stable

when the element assumes its normal value is that the

Nyquist diagram for the return difference, return ratio, or

loop transmission of the element should not encircle the

appropriate critical point.

The choice between the T and nfi diagrams can conveniently be related

to the well-known fact that under normal circumstances a feedback ampli-
fier must contain an odd number of stages in its forward circuit. In an
ordinary design, for example, the purely passive parts of the feedback loop

will give a very small phase shift in the neighborhood of the band center
co , while on each side of co they will vary in a manner somewhat similar

to that shown by the diagram of Fig. 8.17. It is clear that if the passive
circuits furnish the complete m/3 characteristic such a diagram will encircle

the point 1,0 and produce instability unless the loop transmission is very
small. There is, however, a phase reversal associated with each tube. By
using an odd number of tubes we secure one net phase reversal. This
rotates the n(i diagram into the position shown by Fig. 8.18, and permits
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the use of a substantial amount of feedback near «o without instability.

The /j/3 diagram is thus appropriate when we consider the complete phase

shift around the feedback loop, including the tubes, while the use of the T
diagram, in an amplifier containing an odd number of stages, is equivalent

to considering the phase shifts of only the passive parts of the structure.

The amplifier can, of course, be built with an even number of stages by using

one of the devices described in Chapter III.

«o=|.3

<i>=0.S

Fig. 8.19

As a quantitative example of a Nyquist diagram we may consider the

circuit shown by Fig. 7.2 in the preceding chapter. It is apparent from

equation (7-12) of that chapter that the return ratio T for the tube can be

written as

p
3 + Ip + 1

T = (8-18)
3p

3 + 4^,2 + lp + 2

If we assume, for definiteness, that n = 5, this yields the values of T given

in the following table.

CO T 03 T

2.5 - i0 1.7 -0.26 + jO.87

0.5 1.73 - il.05 1.8 + /1.02

1.0 0.5 - #1.5 2.0 0.44 + 21.12

1.2 —0.33 - £1.17 3.0 1.29 + /0.81

1.4 -0.79 - /0.26 4.0 1.48 + J0.59

1.5 -0.73 + 20.23 6.0 1.59 + 20.38

1.6 -0.53 + i0.6l 10.0 1.64 + 20.22

The Nyquist diagram obtained by plotting these points is shown by
Fig. 8.19. The plot does not enclose the point — 1,0 so that the system is
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stable. We may notice, however, that the whole diagram is proportional
to n and would enclose —1,0 if /t were multiplied by perhaps 1.25 or 1.3.

This agrees with the calculations made in the preceding chapter, where it

appeared that some of the zeros of A would be found in the right half-plane
for ix > 6.4. The stability of the circuit for negative m's can be examined
conveniently by using the same diagram with the critical point taken as 1,0.

We observe that to make the system stable under these conditions we
must multiply /j. by a factor of about 0.4, which agrees with the limit

/* = — 2 determined in the preceding chapter. We may also notice that
the values of co at which the Nyquist plot crosses the real axis, which, of
course, mark the places at which the plot encounters the two critical points
when n is assigned its limiting values, are respectively db 1 .45 and 0. These
agree with the values given in Chapter VII for the points at which the vari-
ous zeros of A cross from the left to the right side of the plane.

mm^,
t J

(j =0.8*

tj^Q.lS~~

iteMt

llo= 0.62.

'-'Aci tj=2.S4
y*j u=o.3i} Jus 1.0

iu = 1.6 Z.

£> = 1.33
•Wo<)

<o: .20

Fig. 8.20 Fig. 8.21

A second example is furnished by the circuit of Fig. 8.20. The structure
represents a normal three stage amplifier with shunt feedback except that
to simplify the computations all the branches have been taken as propor-
tional to a given admittance y. Let the transconductances of the three
tubes be represented by Su S2 , and S3 . If we ignore the phase reversals
due to the tubes, the voltage gains from the first grid to the second and
from the second to the third are respectively Si/y and S2/y, while that from
the third grid back to the first is kS3/(l + 2k)y. The product of these
three is the return ratio T for any one of the tubes. We therefore have

TT2k SlS2S3
i*'

(8-19)

To plot the Nyquist diagram, we will suppose that y = 1 + p + (1/p).
This corresponds to a resistance, capacity, and inductance all in parallel.
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Such a structure might represent a simple form of amplifier transmitting a

band of frequencies in the neighborhood of the resonance of the coil and

condenser. If we choose kSiS2 Sz/(l + Ik) = 6, this gives the Nyquist

diagram shown by Fig. 8.21. Only the positive half of the diagram is

shown, since with the symmetrical characteristics chosen the negative half

is an exact duplicate. It will be seen that the circuit is stable and gives a

return difference in the center of the band of 17 db. The circuit becomes

unstable, however, if the tubes are assumed to have slightly more gain.

8.8. Nyquist's Criterion for Stability— Multiple Loop Case

The discussion in the foregoing section has been based upon the assump-

tion that none of the roots of A can be found in the right half-plane, or in

other words, that the circuit is stable when the prescribed W vanishes.

This assumption is, of course, valid if W represents a tube in any single

loop amplifier, and it can also be expected to hold for the majority of

multiple loop cases. On the other hand, certain multiple loop circuits may
be stable under operating conditions but become unstable when specified

tubes fail. This section will consider the application of the Nyquist

diagram to such situations.

If some of the roots of A are found in the right half-plane, it is evident

that the circuit will not be stable if the Nyquist diagram fails to encircle

the critical point. In accordance with (8-17) such a situation implies

that there are as many roots of A as there are of A in the right half-plane.

To assure stability the Nyquist plot should encircle the critical point

in a counterclockwise direction as many times as there are roots of

A to consider. It is therefore necessary to know the number of these

roots. This can be determined from the Nyquist diagrams for the other

tubes of the circuit with the original tube dead. To analyze the situation

generally, let it be supposed that the tubes are originally all dead and are as-

signed their normal gains one by one in some chosen order. As each tube is

restored to its operating condition we may compute its return difference for

the condition of the other tubes existing at that stage of the process and

plot the corresponding Nyquist diagram. It follows from (8-17) that the

diagram for the./'th tube will encircle the critical point Pj — Nj times in a

counterclockwise direction, ifPy and Nj represent respectively the numbers

of poles and zeros of the jth return difference which appear in

the right half-plane. The total number of encirclements for all plots

is (Pi - Nt ) + (P2 - N2 ) + h (Pn - Nn ). But the A which

appears in the numerator of any return difference is the same as the A in

the denominator of the succeeding return difference. We therefore have

Nj = Pj+i- Moreover, Pi = 0, since the circuit with all tubes dead must be

stable. The final circuit will be stable ifNn = 0. We therefore have the
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Theorem: If a circuit is stable when all its tubes have their normal
gains, the total number of clockwise and counterclockwise

encirclements of the criticalpoint must be equal to each other
in the series of Nyquist diagrams for the individual tubes
obtained by beginning with all tubes dead and restoring

the tubes successively in any order to their normal
gains.

In applying this theorem, it is important to notice that the gains of the
tubes may be restored in a variety of orders. If the amplifier contains n
tubes there are, in the general case, n\ possible arrangements. Although
the final index of stability or instability must be independent of the order
in which the tubes are chosen, the diagram for any individual tube may be

vastly affected by the point in the series

at which its gain is supposed to be restored.

An example of this theorem is furnished

by the circuit of Fig. 8.22. The structure

s~y I /^~~\ I
ls tne same as that shown previously by

~K4 J-L(?4vl
Fig

'

8 '2° eXcept for the addition of a sub"

i
VL-x Hn M-/ r!n sidiary feedback around the first two

stages of the forward circuit.* A two-
stage subsidiary loop is a convenient

Fig. 8.22 choice here, where we are interested in il-

lustrating a circuit which may become un-
stable when one of the tubes fails, since, as shown previously, an even number
of stages leads to a returned voltage which is broadly of the wrong sign for

stability. In the present instance we may therefore expect the circuit to

sing when the output tube fails, if the gain of the first two stages is suffi-

ciently great.

It will be assumed, for definiteness, that ki = 0.001 and k2 = 0.01. We
may expect from these numbers that questions of stability will arise as

soon as the voltage gain per stage is greater than about 10. The several

Nyquist diagrams which are required to determine whether the structure
will be stable can, of course, be obtained from loop transmission compu-
tations, as was done in connection with Fig. 8.20. For the variety of cases

to be considered here, however, it is simpler to base the analysis upon
the determinant of the system. Using nodal methods, we readily find

that

* This general type of circuit was described by F. B. Llewellyn, (U.S. Pat. No.
2,245,598), who called the subsidiary feedback the a circuit, in distinction to the
principal, or /3, feedback. The present example is, of course, not intended to illus-

trate the contemplated engineering applications of such a circuit.
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A =

(1 + h + k2)y -k2y

Si y

^2 (1 + k2)y

-kxy

-hy S3 (1 + h)y

y
4 + k1k2y

3 S3 - k^S^ + ktfSiSaS* (8-20)

where «?i, ^2, and 6*3 are, as before, the transconductances of the three

tubes, and the second expression has been simplified by ignoring the small

quantities ki and k2 in comparison with unity.

Since the circuit contains three tubes there are 3 ! = 6 orders in which

the gains of the tubes can be restored. The first two tubes, however, can

be regarded for analytic purposes as a single tube, since they are directly in

tandem and cannot affect the stability of the circuit unless both are opera-

tive. This is evidenced by the fact that ^i and

S2 appear only as the product SiS2 in (8-20).

We need consider, consequently, only two possi-

bilities, one in which the gains are restored in the

order Ss;SiS2 , and the other in which they are re-

stored in the order SiS2 ;S3 .

The simpler Nyquist diagrams are found if we
begin by restoring the gain of S3 . After S3 is re-

stored, its return ratio is readily found from (8-20)

by means of the formula T = (A/

A

) — 1, where, of course, A represents

the determinant when S3 has its normal value, A the determinant when S3
vanishes, and both quantities are to be evaluated under the assumption
that SiS2 = 0, since the gains of these tubes have not yet been restored.

This gives

kik2 S3

9-

Fig. 8.23

T =
y

(8-21)

Upon choosing y = 1 + p + (1/p), as before, this leads to a Nyquist
diagram whose positive frequency half is shown by Fig. 8.23. For practical

values of «S"3 the path would be very small because of the very small value

of k\k2 , but in any event it is clear that it does not encircle the critical point

-1,0.

We next restore the gains of the tubes Si and S2 to their normal values.

The resulting return ratio for these tubes can be found by the same general

method as was used in obtaining (8-21 ) and appears as

r = kiS3 — k2y
hk2y

2 s3 +y
S\S<> (8-22)
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A series of curves for the positive frequency half ofT for u > 1 is shown by
Fig. 8.24.* In each case it has been assumed that ^i^ = 200. The re-

sults for other values of S1 S2 can, of course, be obtained merely by expand-
ing or shrinking the curves actually given. Assuming that SX S2 = 200,
Curve I gives the Nyquist plot when S3 = 40. It will be seen that the plot
encircles the critical point - 1,0. In the preceding diagram of Fig. 8.23, on
the other hand, the critical point was not encircled. The net number of
encirclements in the two plots together is therefore not zero and in accord-
ance with the preceding theorem the structure is consequently unstable.

Fig. 8.24

Curve II gives the result when S3 is assumed to be 20. The circuit is now
on the edge of instability, since the plot passes directly through the critical

point. As S3 is diminished below 20 the circuit becomes definitely stable.

Curve III, for example, shows the result when £3 = 10. Very low values
of £3, on the other hand, lead once more to instability. For example, when
^3 = 4 the plot is that shown by Curve IV and once more encircles the
critical point.

Instead of following this arrangement we can also restore the gains in the
order St S2 ;S3 . The return ratio for £1 and S2 with S3 = can be obtained
from (8-20) as

T = — *2 <J 1 S2
(8-23)

' The images of these curves about the real axis correspond to values ofw < 1.
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The corresponding Nyquist diagram where SiS2 = 200 is shown by
Fig. 8.25.

It will be seen that the curve in Fig. 8.25 encircles the critical point once
in a clockwise direction.* In accordance with the preceding theorem the
final plot of the return ratio for S3 must consequently encircle the critical
point once in a counterclockwise direction if the complete circuit is to be
stable. This can be examined by setting up
the return ratio for S3 as

T = hy2 + S,S2

y(y
2 - k2 S1 S2 )

(8-24)

The Nyquist diagram corresponding to this

equation when S3 = 10 and St S2 = 200 is

shown by the solid curve of Fig. 8.26, while
the diagrams obtained for the same value of
S3 , but with ^^2 chosen as 100 and 400, are
shown respectively by the broken line Curves
I and II. Considering in particular the solid

Fig. 8.2S

curve, it will be seen that the plot does in fact loop around -1,0 once
in a counterclockwise direction, so that the final structure is stable. This
is, of course, in agreement with the conclusion previously reached in con-
nection with Fig. 8.24, since the assumed S's are the same as those which
apply to Curve III of that figure.

Fig. 8.26

By varying S3 it is also possible to confirm the conclusions reached previ-
ously for the conditions represented by the other curves of Fig. 8.24. The
changes in £3 can be represented in Fig. 8.26 by expanding or contracting

* Figure 8.25 gives only the positive frequency halfof the complete plot. A second
loop around the critical point is, of course, provided by the negative half.
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the diagram or, more conveniently, by keeping the plot fixed and moving

the critical point. If we retain the choice SiS2 = 200, it will be observed

that the circuit remains stable if S3 is varied by a small amount in either

direction from the original value 10, but that it becomes unstable for larger

changes. As an example we may select S3 = 4 which corresponds to

Curve IV in Fig. 8.24. This is equivalent to moving the critical point to

the position Pi in Fig. 8.26. The critical point is thus placed outside the

solid curve, which corresponds to instability in this situation. On the

other hand, the choice S3 = 40, which corresponds to Curve I in Fig. 8.24,

moves the critical point to the position P2 . With this change, the point is

still encircled by the curve, but the encirclement takes place in the wrong

direction.

Fig. 8.27 Fig. 8.28

8.9. Conditional and Unconditional Stability

In a formal mathematical sense, the above criteria of stability, based

entirely upon the encirclement of the critical point in the Nyquist diagram,

require no qualifications. Any structure that meets them is stable. For

practical engineering purposes, however, it is desirable to pay some atten-

tion to the general shape of the Nyquist plot in addition to counting the

number of times it loops around the critical point. This gives rise to two

general classes of stable structures, as illustrated by the return ratio dia-

grams for single loop structures shown by Figs. 8.27 and 8.28. Both dia-

grams represent stable circuits. The first, however, is absolutely or uncon-

ditionally stable, while the second is merely Nyquist* or conditionally stable.

The reason for making this distinction appears if it is recalled that for

practical purposes we are really interested in the stability of an amplifier

* So-called because it was generally assumed before Nyquist's work that .it was not

possible to obtain a positive real /ijS greater than unity without instability.
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over a period of time. Most of the elements of the amplifier can be
expected to remain fairly constant. The gains of the tubes, however, are
likely to diminish with age and since one of the usual objectives in applying
feedback to a circuit is to allow a large variation in the tubes without much
effect on the external gain, it must be supposed that this diminution will be
substantial. Since the return ratio diagram in a single loop feedback
structure swells or shrinks in direct proportion to the gain of the tubes, the
effect of aging therefore will be to contract the loop. If a diagram such as
that shown in Fig. 8.28, in which the return ratio path goes beyond 180°
for an interval in which there is a net
gain around the loop, is sufficiently

decreased the plot will take the form
shown by Fig. 8.29 and evidently

represents an unstable circuit. If

the diagram is of the uncondition-
ally stable type shown by Fig. 8.27,

on the other hand, it can be de-
creased indefinitely without produc-
ing instability.

Another possibility of securing a
change in tube gains with time occurs
when the power is first applied to the
tubes. Until the cathodes are warm
the gain of the tubes will be very small. As power is applied to the circuit,
therefore, we must imagine that the return ratio diagram begins by being
very small and expands continuously to its final position as the cathode
temperatures increase. If the final diagram is of the type shown by
Fig. 8.28, there will be an intermediate point in the course of this expansion
for which the system is unstable. When this intermediate point is reached
natural oscillations begin and build up exponentially. At the same time,
of course, the gains of the tubes increase as the cathodes approach their
operating temperatures so that there is a tendency for the amplifier to pull
itself out of the unstable condition. In most circumstances, however, the
sing develops so rapidly that the tubes are overloaded before the gain is
sufficient to bring the Nyquist diagram out of the unstable condition.
Since overloading usually reduces the effective gains of the tubes, the system
is very likely to persist in an unstable condition permanently.
These difficulties are not necessarily unanswerable. For example, we

may close the feedback loop after the gains of the tubes have reached their
normal values, or we may apply " B " battery to the tubes after the cath-
ode temperatures are sufficiently high. For practical purposes, however,
these devices represent undesirable complications. Moreover, even if

Fig. 8.29
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they are used the amplifier is somewhat unreliable, since it may still sing if

the tubes age sufficiently or if the power supply is momentarily interrupted.

For these reasons, most of the analysis which follows will assume that the

amplifier is to be unconditionally stable. On the other hand, it turns out

that under equivalent circumstances a conditionally stable amplifier may

exhibit much more feedback than would be obtainable from an uncon-

ditionally stable structure. Conditional stability thus represents an

important possibility when adequate feedback is hard to secure.

A second qualification on this discussion is also pertinent. In describing

the characteristics of a conditionally stable circuit it was tacitly assumed

that the structure contained only a single feedback loop. Evidently, the

same physical considerations affect multiple loop structures also. In the

single loop case, however, we can distinguish between conditionally and

unconditionally stable situations merely by inspecting the shape of the

Nyquist diagram, since changes in tube gains affect only the size of the

diagram. In a multiple loop circuit, on the other hand, both the shape and

the size of the Nyquist diagram for any one tube may be affected by

changes in the gains of the other tubes. Examples are furnished by the

preceding Figs. 8.24 and 8.26. This evidently produces a much more

complicated situation. The analysis of the problem is too lengthy to be

given here and will be presented at a later point.

8.10. Extensions of Nyquist's Criterion

Thus far we have applied the Nyquist diagram method of determining

stability only to the return difference A/A?. Since A will appear in almost

any transmission or impedance expression we care to set up, however, it is

clear that the application of the criterion is not necessarily restricted to this

one function. Some of the possible extensions are considered here. The

discussion is given only in outline, since the essential situation is the same

as it is for the return difference function. The chief point to notice is that

any transmission or impedance expression will contain A in combination

with some other determinant, just as the return difference includes both A

and A . In general, the Nyquist diagram will give only the difference

between the zeros and poles of the impedance or transmission function or,

in other words, only the difference between the number of zeros of A and of

the determinant with which it is associated. In extending Nyquist's cri-

terion, therefore, it is necessary to assume that we have some means of

determining the number of zeros in the right-hand half-plane furnished by

the other determinant. This is usually equivalent to saying that we must

know that the structure is stable for some particular reference condition or

if it is not stable what modes of instability it has.
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1. Nyquist's Criterion for a Driving Point Immittance. The immittance
which will be seen at the terminals of a generator applied to the «th mesh
or node of a general network can be written as

W^~ (8-25)

If we make a Nyquist plot of this expression, it follows from (8-17) that
the number of loops encircling the origin will be the difference between the
number of zeros of A and of Ann in the right-hand half-plane. The quan-
tity Ann , however, is the form to which the determinant of the system
reduces when an infinite immittance is across the driving terminals or, in

other words, when the driving terminals are open-circuited in an impedance
analysis or short-circuited in an admittance analysis. If the system is

known to be stable under these conditions (8-25) can have no poles in the
right half-plane. If it also has no zeros in this region, so that the system is

stable under normal conditions, it follows that the Nyquist plot cannot
encircle the origin.

This result can be generalized. Suppose that instead of adding an
infinite immittance between the driving terminals we add only the finite

amount Wn . Since Ann must be independent ofWn (8-25) becomes

W = W+Wn =~ (8-26)
Ann

where A' represents the new value of A. Division of (8-25) by (8-26) gives

W_ __ W _ A

W'~ W+Wn

=
U' (8_27)

If the system is known to be stable after the addition ofWn , (8-27) can
have no poles in the right half-plane and the previous argument applies.

We therefore have the

Theorem: If a system is stable when a prescribed immittance is added
between a pair of terminals it will be stable without the

given immittance provided the Nyquist plot of the ratio

between the total immittances at the terminals in the two
cases does not encircle the origin. In particular, it is neces-

sary to plot only the normal immittance itself if the system
is stable when an infinite immittance is added between the
driving terminals.

In applying this theorem, it must be borne in mind that the complete
Nyquist contour of Fig. 8.7 includes the large semicircle in the right half-
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plane as well as the real frequency axis. This part of the path was dis-

missed in the consideration of F on the assumption that a physical return

difference always approached unity at infinite frequency. The same

simplification obtains here if the quantity which is plotted approaches a

constant value at infinity. If it behaves as either a positive or a negative

power of frequency near infinity, however, the Nyquist diagram must

include an arc of a very large or very small circle to represent the values

assumed by the function over this part of the path.

2. Nyquist's Criterionfor a Transfer Immittance. The transfer immittance

from point i to point./ in a general network can be written as

WT =—- (8-28)
A.7

The Nyquist diagram corresponding to (8-28) will encircle the origin as

many times as there are roots of A in the right half-plane provided there are

no roots of Ay in this region. From the discussion under 5c in the list of

general network conditions given in the preceding chapter, the restriction

on the roots of Ay is equivalent to specifying that the transfer immittance

must be a minimum phase shift function. We can therefore conclude that

if the transfer immittance is known to be of minimum phase type the net-

work will be stable provided the Nyquist diagram of the transfer immittance

does not encircle the origin. As an example we may consider the familiar

expression /x/(l — m(3) for the gain of an ordinary feedback amplifier.

Since a transfer immittance has the physical significance of a loss, this

expression can be regarded as the reciprocal of the transfer immittance

from input to output. The poles of transfer immittance are consequently

either points at which n vanishes or points at which /3 becomes infinite.

None of the latter group of points can be found in the right half-plane, since

the /3 circuit, being passive, is necessarily stable. None of the former group

of points will appear in the right half-plane if the gain p by itself represents

a minimum phase shift expression. This will be true for any of the n cir-

cuits encountered in ordinary design practice. In any ordinary situation,

therefore, the stability of the amplifier can be determined by observing

whether or not the Nyquist plot of its external gain encircles the origin.*

This analysis can be generalized by methods similar to those used for the

* In making such a plot, however, allowance must again be made for the fact that

the complete Nyquist path includes the large semicircle in the right half-plane. In

practical situations, the gain of the amplifier must eventually drop off as some nega-

tive power of frequency. The final part of the diagram must include an arc of a very

small circle to represent the behavior of such a function over the large semicircular

portion of the path.
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driving point immittance. We observe that Ay in (8-28) must be inde-
pendent of the self-immittances at /' and./. If we make an arbitrary change
in either or both self-immittances, therefore, we can write the new transfer
immittance as

W'T = — (8-29)

where A' represents the new value of A. The ratio of (8-28) and (8-29) is

WT A
w^'H (8"30)

and the Nyquist diagram of this function will encircle the origin as many
times as there are roots of A in the right half-plane if there are no roots
of A' in this region. We therefore have the

Theorem: If a system is stable when prescribed immittances are added
at two points in a circuit, it will also be stable without the
added immittances if the Nyquist plot of the ratio of the
transfer immittances between the two points in the two
cases does not encircle the origin. In particular, it is neces-
sary to plot only the transfer immittance in the second case
if the function is known to be of minimum phase type.

8.11. Two Theoremsfrom Function Theory

The discussion of this chapter will be concluded by the demonstration of
two standard theorems from function theory. The theorems are developed
here for use in the next few chapters. They can conveniently be regarded
as by-products of the Nyquist diagram method of treating stability,
although they are usually established independently.
To develop the first theorem, let/^z) and/2 (z) be two functions which

are analytic within and on the boundary of a given region. Both/i (2) and
/2 (z) may, however, have zeros within the region. It will be assumed that
l/i(z)| > l/2(z)l at all points on the boundary. Consider the function
F(z) defined by

U
/i(s)

+
/i(z)

(8~3I)

In accordance with (8-17), the number of times the origin is encircled by
the Nyquist plot of F(z) is equal to the difference between the number of
zeros ofF(z) and the number of poles ofF(z) lying within the region. But
the zeros and poles are respectively the roots of/x(z) +/2 (z) and/i(z).
Furthermore, since we have assumed |/i(z)| > |/2 (z)| on the boundary,
it is clear from the right-hand side of (8-31) that the Nyquist plot must be
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inside the unit circle in Fig. 8.30. Evidently the plot cannot encircle the

origin at all. We therefore have the

Theorem: If/i(z) and/2 (z) are analytic on and within a given closed

contour and |/i(z)| > |/2 (z)| on the contour, the func-

tions/i(z) and/i(z) +/2 (z) have the same number of roots

within the contour.

The general field of application of this

theorem is obviously that of determining

rough limits within which changes in a

structure can be expected not to affect

its stability. As an example, suppose

/i(z) represents an impedance looking

into some pair of terminals in an ampli-

fier. It will be supposed that /i(z) is

" open-circuit stable " — so that it has no

poles in the right half-plane. Let /2(z)

be an ordinary passive impedance added

between these terminals. If |/i(z)f > |/2 (z)| at all points on the real

frequency axis the addition of the passive impedance cannot affect the

stability or instability of the structure.

Fig. 8.30

p2fZ^m
/ 1 \

/ \

/ 1 1

*

Fig. 8.31 Fig. 8.32

To establish the second theorem, let/(z) be analytic within and on the

boundary of some given region. The Nyquist plot of/(z) will take one of

the forms indicated by Figs. 8.31 and 8.32, depending upon whether or not

there is a root of/(z) in the region. Let z be any point in the region. In

accordance with the argument advanced in connection with Fig. 8.13,

/(z ) can be represented by some point P lying within the Nyquist plot in

Fig. 8.31 or 8.32. Evidently the real component of/(z ) cannot be as great

as the real component exhibited by/(z) in some parts of the boundary
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because in either figure we can find some point Pi on the plot itself which
lies to the right of P. Similarly, the existence of points such as P2 indi-

cate that there must be parts of the boundary for which the real component
of/(z) is less than that of/(z ). The points P3 and P4 illustrate similar

relations for the imaginary component. In both plots, also, there is a
point P5 corresponding to an absolute value of/(z) greater than that of
/(z ). In Fig. 8.32 we can, in addition, pick out a point P6 corresponding
to a smaller absolute value than that of/(z ), as well as points Pi and Pg
at which the phase angle is greater than and less than that of/(z ). But
the z with which we started was any point in the interior of the region.

We have therefore established the

Theorem: If/(z) is analytic within and on a given closed contour the
maxima and minima of the real and imaginary components
of/(z) and the maximum absolute value of/(z), for the
region composed of the contour itself and the points interior

to it, are all found on the contour. If/(z) has in addition

no zeros within the contour the minimum absolute value of
/(z) and the maximum and minimum phase angles of/(z)
are also found on the contour.

An example of this theorem is furnished by the common engineering
problem of maximizing or minimizing some aspect of the performance of a
complete passive network at a prescribed frequency by making the most
suitable choice of some branch impedance which is under our control. It
will be supposed that the branch impedance may be a reactance, a resist-

ance, or some combination of the two. In general, any ordinary passive
network characteristic, such as a driving point or transfer impedance, will

have neither zeros nor poles considered as a function of one of the branch
impedances, as long as the branch impedance has a positive resistance com-
ponent.* In other words, both the driving point or transfer impedance and
its logarithm will be analytic functions in the right half of the plane repre-
senting the branch impedance. It follows that the real and imaginary
components of the driving point and transfer impedances, their absolute
values, and their phase angles will all assume both larger and smaller values
on the imaginary axis than they do anywhere in the right half-plane. Since
we cannot assign a negative resistance component to the branch impedance,
the maximum and minimum values which are physically obtainable for any
of these quantities must therefore be found when the branch impedance is a
pure imaginary. It is not necessary to examine dissipative impedances.

* An exception to this statement must be made for the transfer impedances for
certain types of bridge circuits, in which zero delivered current can be secured by
bridge balance. These are the non-minimum phase shift networks described in a later
chapter.



CHAPTER IX

Physical Representation of Driving Point Impedance Functions

9.1. Introduction

This and the succeeding chapter are devoted to a general discussion

of the properties of driving point impedance and admittance functions on

the basis of the requirements laid down in Chapters VII and VIII. The
material is not intended to constitute a complete theory. It is presented

principally to illustrate the general requirements deduced in preceding

chapters by showing some of the more elementary physical consequences to

which they lead. For the sake of logical coherence, however, the present

chapter will be centered about the general problem of showing that the con-

ditions on driving point impedances laid down in Chapter VII are sufficient

as well as necessary or, in other words, that any impedance functions meet-

ing these conditions can be realized in a physical structure. Miscellaneous

additional topics will then be treated in Chapter X.

The list of requirements on driving point impedance functions given in

Chapter VII includes both general conditions applicable to all networks,

active or passive, and additional special conditions applicable only to

passive structures. Purely passive impedances, however, are both those

for which the greatest experience is available and those of greatest present

importance in design. The discussion will consequently be directed princi-

pally at impedances of this type. Active impedances are treated by indi-

cating the points at which they require formal extensions in the passive

analysis. In particular, the present chapter will begin by showing how

any impedance function meeting the passive requirements can be realized.

The problem of realizing an active impedance expression is then treated by

showing that any active impedance can be obtained from a combination of a

passive impedance and a negative resistance.

9.2. Resistance Reduction of Passive Impedances

The conditions which must be met by any passive impedance function

were given as 1, 2, 3, 4, Sb, and Ga in the list of Chapter VII. Our first

object is to show that an actual physical structure can be found which will

represent any impedance function meeting these requirements. Methods

170
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of solving this problem have been invented by Brune* and Darlington.f
Darlington's structure consists of a four-terminal reactance network termi-
nated in a resistance. He is able to show that by properly proportioning
the network the input impedance of the structure can be assigned any
functional form which meets these requirements.

For the purposes of this book the method developed by Brune is the
more useful. Brune's method depends upon two principles. In order to
explain the first, let it be supposed for simplicity that the impedance func-
tion has no zeros or poles on the imaginary axis. The fact that this assump-
tion is immaterial is shown in the next section. Both the impedance and
admittance will then be analytic in the right-hand half of the p plane,
including the imaginary axis. This is a situation which can be examined
by the second of the two theorems developed at the end of the preceding
chapter if we regard the right half of the p plane as the region of analyticity
and the imaginary axis as the boundary. For our present purposes, we will

be particularly interested in the conclusion that the minimum value of the
resistance or conductance along the imaginary axis is less than any value of
resistance or conductance in the right-hand half-plane. Since the real

component of the impedance is positive at all points on the real frequency
axis, from 6a of Chapter VII, it consequently follows that it must also be
positive throughout the right half of the p plane. Brune described this
situation by the statement that a passive impedance is a positive real
function, by which he meant that the real component ofZ is always positive
when the real component ofp is positive.

The same result can also be established by the energy function argument
of Chapter VII if we write the right-hand side of equation (7-32) of that
chapter as Ejy, as in the preceding equation (7-25), instead of zero, so
that the equation refers to the steady-state rather than to the transient
condition of the network. The term Eji will, of course, be retained in the
final expression (7-34) and can be interpreted as the conjugate of the driv-
ing point admittance in the same way as was done in connection with
(7-30). If we represent the phase angle of the impedance by 6, set

P = Pi + ip2, and write T, F, and V for brevity to represent the sums
Ta + Tb, etc., this allows us to write

* Journal of Mathematics and Physics, M.I.T., Vol. X, Oct. 1931, pp. 191-235.

t Journal of Mathematics and Physics, M.I.T., Vol. XVIII, No 4 Sept 1939
pp. 257-353. '

* '
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The quantities T, F, and V are, of course, always positive. In the right

half-plane, where pi is also positive, it is easily seen that the absolute value

of is less than, or at most equal to, the absolute value of tan
-1

p^lpi-
In other words, when p lies in the right half-plane, Z must have a phase

angle less than or in the limit equal to that of p itself. Evidently, there-

fore, the phase angle of Z cannot reach ±90°, so that the real component of

Z must be positive.

The fact that the minimum resistance occurs on the real frequency axis

may also be used to deduce a second result. Evidently, if we subtract any

resistance not greater than this minimum from the impedance function we
will still have a positive resistance throughout the right half-plane. The
new function can therefore have no zeros in this region. The poles of the

function and the various conditions ofconjugacy are, moreover, not affected

by the subtraction of a finite real constant. Since an exactly symmetrical

situation is obtained if the analysis is expressed in terms of admittances

rather than impedances, this allows us to state the

Theorem: A passive immittance will continue to meet the conditions

of physical realizability in passive networks if it is dimin-

ished by any real constant as long as the real component of

the resulting expression does not become negative at any

real frequency.

An immittance function will be called a minimum resistance or minimum
conductance expression if its real component vanishes at some point on the

real frequency axis, so that no further diminution is possible, without vio-

lating the passive conditions.

As an example of these relations we may consider the impedance Z\

given by the first of equations (7-17) of Chapter VII. The corresponding

Ri, also given by these equations, has a minimum at oj
2 = 1.63, at which

point it is equal to 0.105. The impedance will consequently continue to

satisfy the passive conditions if we subtract from it any resistance not

greater than 0.105. The limiting, or minimum resistance, expression is

given by

Z'-Z 10J
0-^2 + Q-69/> + l-58

Zx -Z,- 0.105 -
5p2 + 3p + 4

(9 2)

As an alternative to this procedure we may also examine the reciprocal of

Zi, using an admittance analysis. The real component of 1/Zi reaches a

minimum value of unity at o>
2 — 1. The corresponding minimum con-

ductance expression is

Z\ ir + p + 2
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This is the same as 1/Z2 in (7-17) in Chapter VII, as we might expect from
the relation between Z\ and Z2 indicated by Fig. 7.5 in that chapter.

The principle of resistance or conductance reduction has been introduced
here primarily as a step in the development of Brune's method of synthe-
sizing networks. It is, however, of occasional value also in actual design
problems. As an example, let it be supposed that an interstage network
has been designed without regard to plate or grid-leak conductance and
that we wish to take account of these quantities. If the interstage design
includes a parallel resistance of sufficiently low value there is, of course, no
difficulty in making the appropriate changes. The preceding theorem
shows, however, that if the minimum conductance of the network is

sufficiently large the impedance can always be represented with such a
branch, even if the original structure of the network is quite different. In
this example, of course, the equivalent circuit, while it may be physically
realizable in a theoretical sense, may not be found in a configuration which
lends itself readily to actual construction.

9.3. Reactance Reduction of Passive Impedances

The preceding section has shown that the real component of a passive
immittance can be varied by a constant amount, within certain limits,

without affecting the passive character of the complete expression. Similar
possibilities may also exist for the imaginary component except that the
change, instead of being a constant, is a prescribed function of frequency.
These possibilities are associated with the presence of zeros and poles of

impedance on the real frequency axis. It will be recalled that zeros and
poles of impedance at real frequencies are always simple and occur in plus
and minus pairs. Let ±p represent such a pair of zeros or poles. If p
represents a pole we can write Z = Z'/(p - p ), where Z' has no pole atpo
and can consequently be expanded in a Taylor's series about this point.
We can therefore write

2 =
« r [A° + Ji(P~ Po) + Mp ~ Po? + •]
P — Po

=
fZ~Z + Al + A<1<<p - Po) + •••

(9-4)

If po represents a zero, we have, similarly,

Z = (p - Po)[B + Bx (p - p ) + B2 (p - p )
2 + •-.]. (9-5)

When p is very close to p , the terms A /(j> - p ) and B (p - p ) in
these expressions are much more important than any others. Since

p — po is a positive imaginary for values ofp on the imaginary axis on one
side of po and a negative imaginary for values on the other side, both A
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and B must be real quantities if the impedance is not to have a negative

resistance component for frequencies sufficiently close to po on one side or

the other.

Both A and B must also be positive. This is immediately apparent if

we make use of (9-1 ) . Unless AQ and B are positive the impedance will be

approximately a negative resistance, with a phase angle certainly greater

than ±90°, for values of p sufficiently close to p in the right-hand half-

plane. The fact that A and B must be positive can also be shown

directly from a Nyquist stability diagram. In applying this method it

must be recalled that the integration contour assumed in preparing the

diagram may include small indentations

away from the real frequency axis, as shown

by Fig. 8.7 of Chapter VIII, to avoid singu-

larities of the integrand on that axis. Since

the integrand in the Nyquist method is the

logarithmic derivative of the impedance

function such an indentation must be made

for each zero and pole of impedance on

the real axis. If we consider in particular

a pole, the resulting Nyquist diagram may
be studied by means of Fig. 9. 1 . The solid

line shows the behavior of the function on

the small indentation and adjacent parts

of the real frequency path when A is

supposed to be positive, while the broken line gives a similar plot when J
is negative. The dotted line indicates the plot corresponding to other

parts of the real frequency axis. The exact shape here is unimportant, but

this part of the complete plot must of course link up with either the solid or

the broken line portions without leaving the right half-plane. It is clear

that if we choose the broken line path the complete plot will encircle the

origin, so that the stability condition will be violated.

From these facts, it is easy to show that a zero or pole at real frequencies

can always be represented as an ordinary resonant or anti-resonant network.

Corresponding to (9-4), for example, there must be a similar expansion

about the conjugate pole at -p . While the two expansions will not, in

general, be identical, it is easy to see that the constant A , at least, will be

the same in both. The sum of the two terms representing the poles is,

however, 2J p/(p
2 - pi). This can be identified with pD/{p2 + D/L),

which represents the impedance of an anti-resonant network, provided we

have
2A

D = 2A ; L = -—5--

--T,-
• *! [t ^

t

/> \
/

(

1

1 ,\_,'
\ *

\

\
\ 7
\vv

^. 4!\l^
Fig. 9.1

Po
(9-6)
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Since J is positive and pi is negative, both elements must be positive. In
the special case when the pole occurs at zero or infinity the anti-resonant
network reduces to a condenser or an inductance. In an exactly similar

way, of course, we can represent zeros of impedance, or poles of admittance,
by series resonant circuits in parallel with the rest of the network.
An impedance all of whose real frequency poles have been deleted in this

manner will be called a minimum reactance network, while if the zeros have
been removed it will be called a minimum susceptance structure. In
either case the removed branch is, of course, a pure imaginary on the real

frequency axis.* The resistance of the remainder at real frequencies is

therefore still positive and we need merely repeat the argument of the
preceding section to show that the remainder must consequently meet all

the passive conditions. This establishes the

Theorem: A passive impedance or admittance will continue to meet
the conditions of physical readability in passive networks if

it is diminished by the reactance or susceptance correspond-
ing to its real frequency poles.

As an example of this process we may consider the impedance function

2p
2 + p + 1

Z =
,.3 i ^2 , |_ ,

* (9-7)
P + p + p + 1

v /

The expression meets all the requirements of physical realizability in a
passive network. There are three poles, one at p = — 1 and the remaining
two at p = ±i. The latter pair, since they occur on the real frequency
axis, indicate that Z is not a minimum reactance function. In order to
extract these poles, it is convenient to begin by noticing that A in (9-4)
and (9-6) must satisfy the relation

J = lim [(p - p )Z]
p—>P0

* In the right half-plane, however, it has a positive real component, as we can see by
inspection of the branch immittance expression. This is of interest in connection
with the analysis of the preceding section, which was based upon the assumption that
the immittance had no singularities on the real frequency axis and the consequent fact
that its real component attains smaller values on the axis than it does anywhere in the
interior of the right half-plane. It is clear that the argument holds a fortiori if we
begin with a non-minimum reactance or susceptance expression.
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In the present instance, whereto = — 1, this gives

>2 + 1 2p
2 + p + 1 1

-1)J
^o im -

—»L
lim
p—

M

1
2

2* (p + l)(p' +
(9-9)

Using this in (9-6), we find that the elements of the corresponding anti-

resonant circuit are given by L — D = 1. If the impedance of these com-

ponents is written separately the complete expression corresponding to

(9-7) appears as

P !

1 + p
2 +

1 + p
(9-10)

The first term on the right-hand side represents the anti-resonant network,

AAy^^ while the second is the minimum reactance part
pJULgy

Q£ ^g conlplete expression. The second is

I
|

I readily identified with the impedance of a re-
1

sistance in parallel with a condenser so that the

complete structure is that shown by Fig. 9.2.

In amplifier design, the principle of reactance or susceptance reduction

is chiefly useful as a guide to available interstage configurations. An

example is shown by Figs. 9.3 and 9.4. In Fig. 9.3 we observe that, aside

1

a
—6

Fig. 9.3 Fig. 9.4

from the parasitic capacity, the interstage impedance must have a pole at

infinity, since both branches contain series inductances. It is conse-

quently possible to represent this portion of the network as a single induc-

tance in series with some other physical impedance. This is illustrated by

Fig. 9.4, the residual network after the pole at infinity is extracted being

represented by the box. The exact configuration of the residual portion

will depend somewhat upon the numerical values of the elements in the

original structure, but one possibility is indicated by the broken lines.
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Although the two structures are theoretically equivalent the structure of

Fig. 9.4 has the practical advantage that it tends to minimize the effects of

element capacities to ground. At high frequencies, in Fig. 9.4, we have, in

effect, to reckon with the ground capacity of only the single series coil, so

that the introduction of interstage elements produces

only a slight increase in the total interstage capacity.

As a second example, let it be supposed that the

structure of Fig. 9.2, in association with the usual

parasitic capacity, represents an interstage impedance.

This particular configuration is a convenient one for

many design purposes. From a theoretical point of

view, however, it is obviously inefficient, since it in-

cludes a capacity path through the network at high

frequencies. This corresponds analytically to a pole

of admittance at infinity. As the previous discussion

shows, the pole can be split out as a separate shunt FlG - 9.5

capacity which can be absorbed as part of the normal

parasitic capacity of the interstage, thus allowing the same impedance

characteristics to be duplicated at a higher level. The decomposition is

effected by writing the admittance corresponding to (9-7) as

p 1 p
2 + p + 2

2 2 2p
2 + p + 1

Y = $ + ^ ; 2 \ \ , V (9-H)

The network corresponding to this expression is shown by Fig. 9.5. The
first term in (9-11) is, of course, represented by the parallel capacity. The
method by which a representation of the second term is secured may be less

obvious, but it will be explained in a later section. The fact that this part

of the network requires mutual inductance for an exact representation is

unfortunate, but for most purposes a sufficiently good approximation can

be obtained with a network of the same configuration without the mutual

coupling.

9.4. Properties of Networks of Pure Reactances*

In later chapters it will be shown that minimum resistance and mini-

mum reactance networks have the special property that in each case one

of the components of the impedance is fully determined as soon as the other

is known. Thus, for example, if a network is of minimum reactance type

its reactance characteristic can be computed from its resistance characteris-

tic. The only possibilities of changing the reactance without affecting the

* The material of this section is based upon the classic paper by R. M. Foster, " A
Reactance Theorem," B.S.T.J. April 1924, pp. 259-267.
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resistance lie in the addition of a pure reactance network. Particular

interest thus attaches to the properties of purely reactive impedances.

As we have already seen, any zeros or poles of impedance on the real

frequency axis can be represented by resonant or anti-resonant networks.

Conversely, if the network is composed exclusively of pure reactances, this

is the only possible location for the zeros and poles. The proof depends

merely on the fact that the reactive component of any physical network

must always be an odd function of frequency. If the network is composed

of pure reactances, therefore, the impedance as a whole must be an odd

function. It follows that if the reactive network has a zero or pole at

any point po in the complex plane, there must be a corresponding zero or

pole at —po- Since we can never have zeros or

poles in the interior of the right half-plane, how-

ever, this means that no zeros or poles can be found

in the interior of the left half-plane either. The

zeros and poles must consequently be confined to

Fig. 9.6 the imaginary axis. They must, of course, then

be simple and occur in positive and negative pairs.

One more fact will complete the mathematical specification of the

impedance of a network of pure reactances. In a general network there is

no particular restriction on the relative number or arrangement of the real

frequency zeros and poles. In a purely reactive network, on the other

hand, the number of zeros must be the same as the number of poles if we

include the extreme zeros and poles at zero and infinite frequency, and zeros

and poles occur alternately along the real frequency axis. To show why
this must be so, let it be supposed, on the contrary, that two zeros were to

occur consecutively. The reactance characteristic in their neighborhood

would evidently take some such shape as that indicated by the broken or

solid lines of Fig. 9.6. In either case, the derivative of the reactance

characteristic is positive at one zero and negative at the other. In equa-

tion (9-5), however, B can evidently be identified with the derivative at

the corresponding zero. If all the B 's are to be positive, therefore, the

situation shown in Fig. 9.6 is not possible. A similar argument can be used

to show that two poles cannot occur in succession.

With this background, we can write a general formula for the impedance

of any reactive network in the following form

(p
2 - pi)iP

2 - pD (p
2 - pj)

(P
2 -P2

i)(P
2 -ph---(p

2
-pi-i)

In this expression, the quantity k is a positive real constant, while p\, p2 ,

etc., are negative real quantities. Each of the factors (p
2 — pi) thus

represents a pair of zeros or poles at positive and negative real freauenctes.

z = kP 772 727772 ji\
_ . . t^z _ ^ _\

V~11 )
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We can take care of the fact that zeros and poles must alternate by impos-

ing the condition that

~pl > -Pi -i> > -pl > -pi > o.

As equation (9-12) is written, the impedance is zero at zero frequency and

infinite at infinite frequency, which means that there is an inductive path

but no capacitative path through the network. Evidently either a zero or

pole must be found at both zero and infinite frequency, but there is no

particular reason in general why either point should be one thing rather

than the other. We can therefore classify reactive networks into L-L,

L-C, C-L, and C~C forms,'depending upon the types of elements which their

impedances approximate at these frequencies. For example, equation

(9-12) as it stands represents an L-L network. In order to take care of

the other cases, we shall suppose that pi may assume the special value zero

Fig. 9.7

if we wish to represent a network whose reactance is similar to that of a

capacity at zero frequency, and that the last factory2 — />„ may be omitted

in order to represent networks which behave like a capacity at infinite fre-

quency. A sketch of a typical characteristic corresponding to (9-12) is

shown by Fig. 9.7, the modifications necessary to represent other types of

networks being indicated roughly by the broken lines.

Granted any such general formula as (9-12), a corresponding physical

network can be obtained either by representing the poles by anti-resonant

networks in series or by representing the zeros by resonant networks in

parallel, following the methods already described. The only change arises

from the fact that if the structure is composed of pure reactances the repre-

sentation of the real frequency zeros or poles gives the complete network.

There is no residual " minimum reactance " or " minimum susceptance
"

network requiring some other form of representation. Thus if we expand

in terms of impedance poles the resulting structure takes the general form

shown by Fig. 9.8, while if the expansion is taken with respect to the imped-
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ance zeros the result is of the form shown by Fig. 9.9. In Fig. 9.8 the final

series inductance and capacity represent poles at infinite and zero frequency,

Fig. 9.8

respectively, so that the structure is of the C-L type, in the notation of the

previous paragraph. In Fig. 9.9, on the other hand, the parallel inductance

and capacity indicate a structure of the L-C
type. In both cases, however, the networks

can be modified to suit other conditions by
omitting either or both of the odd elements.

With either configuration, the element values

can be computed by the methods already dis-

cussed in connection with (9-4) and (9-6).

In the structure of Fig. 9.8, if Zy and Cy rep-

resent the elements of the anti-resonant net-

work corresponding to the poles at ±pj, these equations can conveniently
be combined to give

-OUUUUO-

Fig. 9.9

= -P?Lj = \~ Z~\ • (9-13)
L Pi Jp=P ,.

(9-14)

The corresponding formula for the elements in Fig. 9.9 is

pfcj Lp
2 -pjI =p :

In most circumstances, the choice between the two configurations depends
upon which one leads to more convenient element values. In general, we
find that the configuration of Fig. 9.9 is the one which requires the larger

inductances and smaller capacities.

O-OULr-pJULTT pJUU—

I

. T T T T
Fig. 9.10 Fig. 9.11

Reactive networks can, of course, be built also in a variety of other
configurations. Two fairly obvious possibilities are given by Figs. 9.10
and 9.1 1. In order to represent any reactance network in the form shown
by Fig. 9.10, for example, we may begin by representing the network in the



DRIVING POINT IMPEDANCE FUNCTIONS 181

form shown by Fig. 9.8, and identifying the first series coil in that structure

with the first series coil in Fig. 9.10. The remainder of the reactive net-

work can then be converted to the form shown by Fig. 9.9, and the shunt

condenser identified with the first shunt condenser of Fig. 9.10. By
repeating the process the complete circuit is built up.

For general engineering purposes, the most significant aspect of net-

works of pure reactances is perhaps the fact that the characteristics which

they may exhibit exist in such limited variety. Over the complete positive

and negative real frequency axis a simple inductance or capacity sweeps

once with positive slope through all values between — °° and + °° . The

most general reactive network characteristic, as illustrated by Fig. 9.7, is

merely the same characteristic repeated several times on a distorted fre-

quency scale.

The distortion of the frequency scale always leads to a reactance charac-

teristic whose slope is greater than that of a simple inductance or capacity.

This can be shown most easily by returning to the energy analysis given in

Chapter VII. Thus in the special case of a purely reactive structure

equation (7-31) of that chapter reduces to

i = MT - V). (9-15)

For a purely reactive network, however, it is also possible to establish the

relation

^f=4X2(T+r) , (9-16)

where, as in (9-15), T and V are evaluated on the assumption that the

network is energized by a voltage of unit maximum amplitude. If the

second of these relations is divided by the first the result is

<!J£=XT+Z>\Al, (5M7)
dca a; T — V 03

where the equality sign holds, of course, only if the network consists

exclusively of inductances or exclusively of capacities. This establishes the

Theorem: The slope of the reactance characteristic of a general reac-

tive network at any frequency is always greater than that

of a simple inductance or capacity having the same reactance

at the given frequency.

These relations are illustrated by Fig. 9.12.

It is to be noticed that (9-15) and (9-16) together determine T and V
fromX and dX/du. This is of some interest in connection with high power
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circuits, such as radio transmitters, where the cost of the elements is largely

determined by their kva ratings. It is clear that the total leva rating of the

complete network, for any single frequency signal, depends only upon its

external characteristics and is independent of its configuration.

— Inductance

^^Z^- Capacity

Fig. 9.12

9.5. Brum's Method of Developing a General Passive Impedance

The two processes of resistance reduction and reactance reduction were

used by Brune to show that any impedance expression meeting the general

passive conditions could actually be represented by a physical network.

Brune's method of finding the network is a step-by-step one. The succes-

sive branches are found one at a time until the last branch is a pure resist-

ance.

The process begins by the representation of the impedance poles at real

frequencies as a number of anti-resonant net-

I
T

Fig. 9.13

works in series, in the manner just described.

After all the poles of impedance have been

removed, the zeros of impedance, or poles

of admittance, of the reduced impedance are

similarly treated. There will result then as

the next few elements of the network a num-
ber of resonant circuits in parallel. After

the zeros of impedance have been removed
we may find new poles which must be taken

out, and then again new zeros, and so on. We will thus secure as the first

part of the expansion a ladder network of the general type shown by
Fig. 9.13.

Since each stage in the representation of the zeros and poles decreases the

degree of the rational function representing the impedance, it is obvious

that the process will either succeed in giving us the complete impedance or

else that we must eventually reach a stage at which there are neither zeros

nor poles on the real frequency axis. Suppose that Zi of Fig. 9.14 repre-

sents the impedance after it is no longer possible to subtract purely reactive
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elements from the circuit either in series or in parallel. In order to continue

the analysis we artificially introduce a zero along the real frequency axis

so that reactive elements in shunt can again be subtracted. The first step

in this process is to subtract from the impedance a series resistance (R of

Fig. 9.14) equal to the minimum value of the resistance along the axis.

This leaves the new impedance Z2 , which at some point along the axis is a

pure reactance. The reactance at this point is eliminated by subtracting a

suitable element. An inductance rather than a capacity is chosen for this

purpose since we will later require a negative mutual impedance, which can

be obtained physically with inductances but not with capacities, to con-

struct the network.

Suppose first that the required inductance is negative, as shown by — L\

on Fig. 9.14. Subtracting it leaves the impedance Z3, which must be zero

at the frequency at which the resistance component of Zt was a minimum.

ovvv\^\v-o-nrrrTTinr'-o 1 o-rnmrrr^o- •

Z/-» z2 -+ z3
-> i

Li
Z4 -> Z5

II
Fig. 9.14

We can therefore introduce a corresponding resonant circuit L2-D in

shunt. This leaves Z4 . Now the impedance Z2 had no pole at infinity, but

the introduction of — L\ gave us a pole at infinity in Z3 and obviously Z4

must still have such a pole. Let this be removed by the introduction of the

element Z3, leaving the impedance Z5 , which again has neither poles nor

zeros along the imaginary axis. It is easily shown that if neither Z2 nor Z5

is to have a pole at infinity, the inductances — L\, Z2 , and Z3 must represent

the equivalent T of a transformer having finite inductance and perfect

coupling. By using such a transformer, therefore, we can provide the nega-

tive inductance —L\ which is required. If L\ is positive the process is

exactly the same except that now Z3 turns out to be negative.

It is easily seen that if the original impedance met the requirements of

physical realizability, each of the successive new impedances will also meet
these requirements.* Z5 therefore meets the same conditions as Zl5 except

that as a rational function it is of somewhat lower degree. By repeating

the process, therefore, we will eventually construct the complete network.

As an example of this process we may consider the representation of twice

* There is a temporary departure from the strict requirements if L\ is positive.

This is amended, however, as soon as L$ is added.
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the residual admittance (p
2 + p + 2)/2(2p

2 + p + 1) which appears in

(9-11). This expression is already of minimum susceptance and minimum
reactance type, so that we can begin immediately with the stage in the

expansion represented by Fig. 9.14. Upon identifying the reciprocal of the

admittance with the Zx of Fig. 9.14, we readily find that the corresponding

resistance is

(1 ~ co
2
)
2

- 3<o
2 + 4

This reaches its minimum value, zero, at co
2 = 1. In the present instance,

therefore, it is not necessary to consider the resistance reduction sym-

0.105 -0.165 0.338

O—A/VNAA ULJULr-

0.3231

fit -2 / ,",' „
• (9-18)

1 -f

zo
Fig. 9.15 Fig. 9.16

bolized by R in Fig. 9.14. At co = 1 we find that Zx = *'. The inductance

represented by — L\ in Fig. 9.14 is therefore +1. After the subtraction of

this inductance, Z3 is given by

2/+P+1 (1-P)d+P2
)

_ (Q_19)23 -
p
2 +p + 2

P ~ p2 +p + 2
(yiyJ

The factor (1 + p
2
) in (9-19) represents the zero corresponding to the

resonance of L2 and D in Fig. 9.14. With the help of (9-14) these ele-

ments can be evaluated as L2 = D = 1. When their contribution is sub-

tracted from Z we obtain, finally,

Z*=-\ + \' (9
-2°)

The term —p/2 evidently represents the inductance Lz in Fig. 9.14. It is,

of course, negative, since the first inductance was positive. The term 2

represents the terminating impedance Zs . In this example it is necessary

to carry the process illustrated by Fig. 9.14 through only one stage in order

to reach a terminating impedance which is a constant resistance because the

original impedance expression was of only the second degree. The complete

structure is shown by Fig. 9.15.

Since Zx in (7-17) of Chapter VII has been used frequently for illustra-

tive purposes it is convenient to adopt this expression as a second example

of Brune's expansion. The situation is essentially the same as that just

examined except for the fact that the present impedance is not initially in
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minimum resistance form. We have already found in connection with

(9-2), however, that the minimum resistance of Zx is 0.105. This gives

the R of Fig. 9.14 and the remainder of the network follows readily. The

complete structure is shown by Fig. 9.16.

As an alternative, we may begin with a conductance reduction of the

impedance, following the analysis given in connection with (9-3). Since

a minimum conductance network is also minimum resistance, this is an

equally legitimate method of going from the initial expression to the stage

represented by Z2 in Fig. 9.14. In the present instance it yields the struc-

ture shown by Fig. 9.17.

For practical purposes the chief objections to Brune's method are the

facts that it uses mutual inductance and that a very considerable amount

of labor is required to compute the elements one by one. On the other

hand, the technique demands a knowledge of the impedance only at real

frequencies, so that it has some advantage in the simulation of impedances

which are specified only by curves.

Fig. 9.18

9.6. Negative Resistances

The discussion thus far has considered only impedance functions meet-

ing the passive requirements. The corresponding physical structures, of

course, then consist of combinations of the three passive elements,

resistance, inductance, and capacity. To consider more general cases we

need one additional building block. The additional unit can conveniently

be taken as a negative resistance, since such an element expresses most

distinctively the difference between a passive network and a general circuit,

containing a source of power.

A negative resistance can be obtained in a variety of rather familiar

ways. No attempt will be made to consider this field in any detail here.

Broadly, one possibility rests upon the difference between the active and

passive impedances of feedback circuits as expressed, for example, by (5-3)

or (5-4) of Chapter V. Evidently, a negative resistance can be obtained

from any feedback circuit of pure resistances if the circuit is so arranged

that the two return differences F(0) and F(<x>) in these equations are of

opposite sign. An example is shown by Fig. 9.18. If we assume that the
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vacuum tubes are ideal the passive impedance at the input terminals is

Ri(Ra + R4 )/(Ri + R3 + JU). The return difference F(0) reduces to

unity, since the return ratio vanishes when the input terminals are short-

circuited. The return ratio with the input terminals opened is negative,

corresponding to the fact that with the two stages indicated in Fig. 9.18

there is no net phase reversal in the tubes, and is readily evaluated as

—GmiGm%RiR2Rz/ (R\ + R3 + R4), where Gmi and Gm2 are the transconduct-

ances of the tubes. Substitution in (5-3) of Chapter V therefore gives

Ri(R3 + R4)

Rx + Rs + Ri

Ri(Ri

1

1
GmiGm2/?i/?2^3
R1+R3 + R4

+ R4)

Ri + R3 + R4 GI

miGm2/?i/?2^?3
(9-21)

Z will evidently be a negative resistance if the R's are chosen appropriately.

For example, if i?i and R3, which are introduced only to make the idealiza-

tion of the circuit appear somewhat less forbidding, are made infinite, Z will

always be negative, as evidenced by the expression

Z = r

~

c\ • (9-22)

Negative resistances can also be secured through a variety of other

devices, such as the dynatron or an arc-

discharge. An illustrative characteristic for

the dynatron is shown by the solid line in

Fig. 9.19. The ratio e/i, representing the

resistance to any steady voltage e, is always

positive. Near the point C, however, the

slope of the characteristic is negative. If

the impressed e is taken as the sum of a d-c

component and a small superimposed a-c

component, as in the analysis of the charac-

teristics of a vacuum tube, the effective resist-

ance to the a-c component, therefore, will be negative when the operating

point is near C.

Negative resistances are introduced here merely as convenient devices

to explore the purely mathematical implications of the general set of

requirements on driving point immittance functions laid down in Chapter
VII. For this purpose they will be regarded as idealized elements of

exactly the same type as positive resistances. Too much emphasis, how-
ever, cannot be laid upon the fact that an actual negative resistance is a

Fig. 9.19
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much more complicated device, subject to many restrictions which are

ignored in such an idealization. Depending upon the circuit to which the

negative resistance is connected, and perhaps even upon the past history

of the circuit, this may lead on occasion to marked departures from the

behavior which would be computed from an idealized analysis. For

example, Fig. 9.19 represents a characteristic which we might expect to

trace physically if the circuit were energized by a battery of controllable

voltage and zero internal impedance. Suppose, on the other hand, that

the device is supplied by means of a much higher voltage operating through

a high external impedance. Then, in effect, we are controlling the current,

rather than the voltage, at the negative resistance terminals. It is evi-

dently possible that the actual characteristic may skip from one branch to

Fig. 9.20 Fig. 9.21

the other, as suggested by the broken lines AD and BE, in such a way as to

avoid the negative slope part of the nominal characteristic entirely. If

the external impedance includes reactive elements the skip may depend

upon transient effects or, in other words, upon the past history of the circuit

and the rate at which the energizing source is varied. Since some external

impedance is required in order to segregate the a-c and d-c components

these considerations cannot be avoided entirely in any application.

In a negative resistance device which relies upon vacuum tubes compli-

cating factors are introduced principally by the unavoidable parasitic

capacities of the tubes. These will evidently convert the negative resist-

ance into an ordinary passive impedance at sufficiently high frequencies.

The change may be unimportant in some applications, but in others it may

produce singing. Which type of behavior is actually followed will depend,

in general, upon both the external circuit and the type of feedback used to

produce the negative resistance.

If we do postulate ideal negative resistance elements it follows immedi-

ately that negative elements of other types are also available. This can be

shown most easily by reference to the well-known circuits shown in

Figs. 9.20 and 9.21. A simple computation shows that the input imped-

ance Z\ is given in either case by

_ D2

Zx
= -£-- (9-23)
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Thus any negative impedance, including as special cases a negative capacity
and a negative inductance, can be produced by terminating the T in the
positive inverse of the required impedance.

9.7. Representation of General Driving Point Immittance Functions

The requirements of the general list in Chapter VII which are relevant
to driving point immittance functions are 1, 2, 3, 4, 5b, and 6a. Of these,
the first four must be satisfied by any immittance function. This suggests
that possible functions may be divided into three general classes, depending
upon whether they meet the first four requirements alone, the first four and
Sb, or all six requirements.* With the addition of two rather obvious sub-
classes the scheme is

la. Functions which have no poles in the right half-plane and whose real

components are positive (or zero) at all points of the real frequency axis.

lb. Functions which have no poles in the right half-plane and whose real

components are negative (or zero) at all points of the real frequency axis.

II. Functions which have no poles in the right half-plane and whose real

components are positive on some parts of the real frequency axis and nega-
tive on others.

III«. Impedance functions in which some poles occur in the right half-

plane.

lllb. Admittance functions in which some poles occur in the right half-

plane.

The Class la is, of course, the class of ordinary passive immittances. The
functions in lb are exactly the negatives of ordinary passive functions.

They will be called negative immittances. The more general functions

described in the later classes will be called general or active immittances.
The conception of a negative immittance is introduced here as a convenient
theoretical abstraction. Such a function can evidently be obtained, under
idealized circumstances, by the methods suggested by Figs. 9.20 and 9.21.

In view of the limitations of physical negative resistance devices, however,
it is probable that any actual function would belong to one of the more
general Classes II or III.

Impedance functions and admittance functions have been written sepa-
rately in Class III to emphasize the fact that the driving source for an

*The apparent fourth class, consisting of functions which meet the first four
requirements and 6a but fail to satisfy 5b, cannot exist. If Si is not satisfied, so that
there are poles in the right half-plane, the Nyquist plot of the function must encircle

the origin, which is inconsistent with 6a. The specification of both the sign of the real

component and the location of the poles in some of the items of the subsequent list is

introduced merely for clarity.
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impedance function is a voltage generator of zero internal impedance, while

for an admittance function it is a current generator of infinite internal

impedance. Networks corresponding to functions of the two types may-

then be described as short-circuit stable and open-circuit stable respectively.

If the functions belong to Class III the corresponding networks will not, of

course, remain stable if the energizing sources are interchanged. In the

other classes, which have zeros and poles confined to the same half-plane,

these distinctions are unnecessary. If

the active immittance is obtained from ^-> b
_
b

a feedback circuit we can frequently de-

termine whether it is open-circuit stable

or short-circuit stable by inspection.

For example, any immittance measured

in series with the feedback loop, as at

AA' or BB' in Fig. 9.22, must be open-

circuit stable, while any immittance Fig. 9.22

measured across the loop, as at CC or

DD', must be short-circuit stable, since in either case the introduction of

the appropriate generator impedance will interrupt the feedback.

For purposes of analytic description, the construction of active imped-

ances is most easily treated by an extension of the processes of resistance

and conductance reduction described earlier in the chapter. In discussing

passive immittances these processes were limited by the fact that the real

component of a passive immittance could not become negative. With the

addition of a negative resistance to the normal passive elements this limi-

tation is unnecessary and we are led at once to a representation of active

immittances by a simple extension of the methods used for passive circuits.

To exemplify this process, let it be assumed that the function to be repre-

sented is an impedance of Class Ilia. It will also be supposed that none of

the zeros of the impedance occur exactly on the real frequency axis.*

* If zeros on the real axis do occur, the corresponding residues of 1/Z must be

positive real, negative real, or complex. Zeros corresponding to positive real residues

can be represented separately by resonant circuits in the manner already described for

passive networks. The other possibilities pose a more difficult problem. They may

exist theoretically in, for example, a feedback amplifier which is on the point of singing.

Consideration of these possibilities will, however, be avoided here on the ground,

mentioned in Chapter VII, that a physical circuit exhibiting such zeros would be

excessively non-linear. Negative real residues can, of course, be represented theoreti-

cally by negative reactance elements but the consideration of this possibility is

especially unrealistic because, in addition to the question of non-linearity, a structure

exhibiting such zeros must necessarily become unstable if it is fed through a generator

circuit including the slightest trace of dissipation.
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The reciprocal, Y, of the specified impedance will consequently be analytic

in the right half-plane including its boundary, the real frequency axis. Let
Gi and —G2 represent the maximum and minimum values of the real com-
ponent of Y on the axis. In accordance with the preceding theorems these

will also be the maximum and minimum values of the real component with
respect to the complete right half-plane. If we rewrite the admittance as

—G2 + (Y + G2 ), therefore, the term Y + G2 will have a positive real

component throughout the right half-plane. In Brune's language it is a
" positive real " function and can be represented by an ordinary passive

impedance. The first term —G2 represents, of course, a parallel negative

I
o-

EQ-R < m eQ+r

a

Fig. 9.23

resistance. The combination is shown by Fig. 9.23a. Similarly, if we write

Y as Gi 4- (Y — Gi) the complete impedance appears as a positive resist-

ance in parallel with a negative impedance. This is illustrated by
Fig. 9.23£. If we begin with a function of Class III^ the analysis is essen-

tially the same, except that we are now led to a series combination of a

positive or negative resistance and a negative or positive impedance, as

shown by Figs. 9.24a and 9.24i>. The results can be summarized as the

Theorem: If an active network is stable with an energizing source of

zero internal impedance, the impedance facing the source

can be represented either by a negative resistance in paral-

lel with an ordinary passive network or by a positive resist-

ance in parallel with the negative of a passive network. If

the network is stable with an energizing source of infinite

internal impedance, the network impedance can be repre-

sented either by a negative resistance in series with a passive

network or by a positive resistance in series with the nega-

tive of a passive network.

This discussion has been advanced specifically for functions of Class III.

It is apparent, however, that it is equally valid for functions of Classes I

and II. We need only recognize that functions of these classes are both
open-circuit stable and short-circuit stable so that they can be represented

in any one of the four ways shown by Figs. 9.23 and 9.24. It may also be
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interesting to notice that the methods of representation can be combined

to give still other possible configurations. For example, since the negative

impedance in Fig. 9.23b is open-circuit stable as well as short-circuit stable

it can itself be represented in the form shown by Fig. 9.24«, leading to a

representation of the original expression by a positive impedance and an L
of positive and negative resistances.

As a matter of emphasis it may be desirable to say once more that the

circuits of Figs. 9.23 and 9.24 do not necessarily constitute either a unique

way or a physically desirable way of constructing active impedances. They

are introduced merely as a convenient method of expressing the physical

significance of the conditions on active and passive driving point immit-

tances laid down in Chapter VII. It will be seen that the difference

between an active and a passive driving point immittance amounts essen-

tially to a single negative resistance, appropriately located. There is a close

analogy between this result and a result derived later for the distinction

between active and passive transfer immittances.

9.8. Combinations of Active Impedances

In dealing with passive circuits we are accustomed to thinking of the

individual passive impedances as units which can be combined with one

another and associated with a driving generator in any way we like. What-

ever arrangement is chosen, the circuit as a whole will remain passive, and

therefore stable. In active circuits, on the other hand, no such freedom is

possible. Impedances which are stable for one energizing source may
become unstable if the source is altered and two impedances which are

individually stable for a given source may become unstable when they are

added together, even if the source itself is unchanged. In dealing with

active circuits, therefore, it is necessary to study the stability of the structure in

terms of the complete impedance or admittance facing the current or voltage

source, including the self-impedance or self-admittance of the source itself.

This is evidently a grave restriction. It affects both the freedom with

which the active network itself can be designed and the freedom with which

the energizing source can be chosen. The latter is perhaps particularly

important. The analysis thus far has assumed that the self-impedance of

the source would be either zero or infinite, whereas most practical sources

have a finite, non-zero, self-impedance. The problem of relaxing these

restrictions will be attacked here through a consideration of the open-circuit

or short-circuit stability of a combination of two immittances in series or

parallel, as illustrated by Figs. 9.25 and 9.26. Each of the two immit-

tances can be regarded as an active structure if we wish, or one of them can

be taken as a representation of the actual self-immittance of a physical

generator.
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The two situations illustrated by Fig. 9.25 can be dismissed easily. If an
impedance is to be short-circuit stable, as in Fig. 9.25a, none of its zeros can
lie in the right half-plane. But since the zeros of an impedance obtained
from a number of branches in parallel are the same as the zeros of the
separate branches, each of the individual branch impedances must be

rZj] Z2 1 » O " " i

Fig. 9.2S Fig. 9.26

similarly restricted. Correspondingly, the zeros of admittance, or poles of

impedance, in the structure of Fig. 9.25b are the same as the admittance
zeros of the component structures and must be excluded from the right

half-plane if the complete structure is to be stable. We therefore have
the obvious

Theorem: A parallel combination of impedances will be short-circuit

stable if and only if all the individual impedances are short-

circuit stable. Similarly, a series combination will be open-

circuit stable if and only if all the individual impedances
are open-circuit stable.

The combinations illustrated by Fig. 9.26 present a more difficult prob-

lem. The discussion here will present only a few elementary rules which
may be useful in some situations. To give the problem a physical context,

we may suppose that Zi and Y\ in Figs. 9.26a and 9.26£ are respectively

short-circuit stable and open-circuit stable structures and that Z2 and Y2

represent allowances for the self-impedance or admittance of the actual

generator. The question which will be attacked is that of estimating under
what circumstances Z2 and Y2 can be introduced without upsetting the

stability of the circuit.

IfZ2 and y2 are real constants their effect on the stability of structure is

most easily determined from an inspection of the Nyquist diagram of the

original Zj or Y\. The addition of a constant Z2 or Y2 is equivalent to a

lateral translation of the whole diagram. It is clear that the lateral trans-

lation will not affect the stability of the circuit as long as it is not large

enough to carry any of the points of intersection between the Nyquist path
and the horizontal axis from one side of the origin to the other. This

leads to the
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Theorem: The series combination of a short-circuit stable impedance

and a positive or negative resistance is itself a short-circuit

stable impedance if the addition of the resistance leaves the

sign of the real component of the impedance unchanged at

every point on the real frequency axis at which the imagi-

nary component of the impedance vanishes. Similarly, an

open-circuit stable structure will remain open-circuit stable

when combined in parallel with a positive or negative re-

sistance for the same condition on the real and imaginary

components of the initial and final admittance.

If Z2 or Y2 are functions of frequency rather than real constants the

problem is more difficult, but it is still possible to show that they will not

affect the stability of the circuit if they meet certain conditions. The
situation can be expressed by the

Theorem: The series combination of a short-circuit stable impedance

Z\ and an open-circuit stable impedance Z2 will be short-

circuit stable if
I
Zi

I
>

I

Z2
I

at all points on the real fre-

quency axis. Similarly, the parallel combination of an

open-circuit stable admittance Y\ and a short-circuit stable

admittance Y2 will be open-circuit stable if
|
Y\

\
>

|
Y2 |

at all real frequencies.*

The wording of the theorem is not intended to imply that an immittance

which is specified, for example, as short-circuit stable cannot also be open-

circuit stable. The stability of the immittances for the non-specified con-

ditions is a matter of indifference.

The theorem is easily demonstrated by methods similar to those used

for the first theorem at the end of the preceding chapter. If we consider in

particular the relation between Z\ and Z2 , for example, we can write

-(-I)Z1 + Z2 = Z1 fl +-^y (9-24)

The quantity Z\ + Z2 can have no zeros in the right half-plane if it is to be

short-circuit stable and its poles must be the same as those of Z\ since Z2 ,

being open-circuit stable, has no poles in this region. The Nyquist plot of

Zi + Z2 must therefore encircle the origin the same number of times in the

* Throughout this discussion it is assumed for simplicity that none of the zeros and
poles of the various immittances occurs exactly on the real frequency axis, including

infinity. The theorems are not necessarily invalid even when this assumption is vio-

lated, as it might be, for example, in circuits controlled at high frequencies by parasitic

capacities, but such situations evidently require careful handling.
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same direction as the plot of Zx alone. It is evident, however, that the

number of times the plot of Z\ -f- Z2 encircles the origin is equal to the sum
of the encirclements obtained by plotting the factors Zj and 1 + (Z2/Zi),
on the right-hand side of (9-24), separately. Since the plot of

1 + (Z2/Zi) cannot encircle the origin at all under the assumed conditions,

as Fig. 8.30 in the preceding chapter shows, this establishes the theorem.

It is evident from the proof of the theorem that the condition

I
Zj

|
>

I
Z2 |

or
|
Yx j > J

Y2 |
does not necessarily fix the actual upper

limit of values which may be assumed by the added Z2 or Y2 . In many
circumstances the circuit will remain stable even if the condition is violated

over a portion of the frequency spectrum. If we disregard one special

case, however, there is a final upper limit beyond which the added immit-
tance cannot go without necessarily producing instability. This is shown
by the following

Theorem: The series combination of a short-circuit stable impedance
Z\ and an open-circuit stable impedance Z2 cannot be short-

circuit stable when \Z2
\

>\Z\\ at all points on the real

frequency axis unless Z\ is also open-circuit stable and Z2

is also short-circuit stable. Similarly, a parallel combina-

tion of an open-circuit stable admittance Y\ and a short-

circuit stable admittance Y2 can be open-circuit stable when

I
Y2

I
>

I
Yi |

at all real frequencies only if both Yx and Y2

are actually both short-circuit stable and open-circuit

stable.

The proof of this theorem is essentially similar to that of the preceding

theorem. We begin by writing the total impedance as

= Z2 (lZ1 + Z2 = Z2 ^l + -^j. (9-25)

Under the assumed conditions the plot of the factor 1 + (Zi/Z2 ) cannot en-

circle the origin. The total number of encirclements by the plot ofZx +Z2

must therefore be the same as those by the plot of Z2 . They must be in

the direction appropriate for zeros since by hypothesis Z2 is open-circuit

stable and has no poles in the right half-plane. Just as in the preceding

theorem, however, the plot of Zi + Z2 must encircle the origin the same
number of times and in the same direction as the plot ofZt if Z\ + Z2 is to

have no zeros in the right half-plane. This must be in the direction corre-

sponding to poles since Z\ is short-circuit stable. Evidently the require-

ments cannot be met unless neither plot actually encircles the origin at all,

which is the same as saying that each of the impedances Zi and Z2 must be

both short-circuit stable and open-circuit stable.
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The preceding theorems cover all combinations of the two impedances

except those in which both impedances are open-circuit stable, but not

short-circuit stable, or vice versa. A guide to this last situation is fur-

nished by the

Theorem: A series combination of two impedances cannot be short-

circuit stable and a parallel combination of two impedances

cannot be open-circuit stable, when both impedances are

either short-circuit stable but not open-circuit stable or vice

versa, if the absolute magnitude of either impedance is

greater than that of the other at all points on the real fre-

quency axis.

It is assumed that the degenerate case in which the two immittances

have strictly coincident poles in the right half-plane can be disregarded.

The proof is similar to those of the preceding theorems. If we suppose,

for example, that |
Z2 |

>
|
Zx |

and that Z\ and Z2 are short-circuit stable

their sum will be short-circuit stable only if the plot of Zi + Z2 encircles

the origin as many times as there are poles of Z\ and Z2 in the right half-

plane. In accordance with (9-25), however, the actual plot will encircle

the origin only as many times as there are poles of Z2 alone in this region.

The two conditions cannot be reconciled except for the trivial case when Z\

and Z2 have identical poles in the right half-plane.

A curious feature of this result is the conclusion that the stability of a

short-circuit stable impedance will not be disturbed by the addition of a

small open-circuit stable impedance but it may be entirely upset if the

added impedance, even though very small, is also short-circuit stable.

Neither of the last two negative theorems applies to combinations of

impedances which are both open-circuit stable and short-circuit stable.

It is natural to expect that this combination is more likely to give a stable

result than any other. If the two impedances are passive, for example,

they can be combined in any proportion. In more general cases, however,

it is still necessary to pay attention to the possible instability of the final

circuit. An example is furnished by a final

Theorem: If Zi and Z2 are respectively a positive impedance and a

negative impedance it is always possible to find values of the

positive constant multiplier X such that the series combina-

tion of Zi and XZ2 will not be short-circuit stable and their

parallel combination will not be open-circuit stable unless

Z\ and Z2 are exactly proportional to one another.

The proof is obvious from a Nyquist plot of (Zx + \Z^/Z\.



CHAPTER X

Topics in the Design of Impedance Functions

10.1. Introduction

The preceding chapter was essentially an attempt to explore the general

physical significance of the list of restrictions on driving point immittance

functions given in Chapter VII. The present chapter continues this dis-

cussion but in a different way. The material selected consists chiefly of

devices and conceptions of direct application in design work. The chapter

is thus intended broadly as a resume of design methods, but its scope is

limited by the fact that it includes no material not easily related to the

analytic framework already established. The discussion is directed prima-

rily at driving point immittance functions, but many of the results apply

also to network functions of other types. Unless otherwise specified a

passive network will be assumed.

Since the chapter does not contribute directly to the theoretical structure

of the book as a whole it can be omitted, if necessary, especially if the

reader is reasonably familiar with elementary passive network theory. If

the omission is made, however, note should at least be taken of the fre-

quency transformations described near the end of the chapter, since they

will be used in several later discussions.

10.2. Inverse Networks

The duality between the impedance and the admittance methods of

analyzing a network suggests a conclusion which was mentioned briefly

in Chapter I but has not otherwise been dealt with explicitly. This is

the proposition that to every network there corresponds an inverse.

The result arises, of course, from the fact that the requirements on physical

driving point functions are the same whether we consider an impedance

or an admittance. If we are dealing with a passive structure, for example,

the requirement that the real component of the impedance be positive at

real frequencies implies that the real component of the admittance must
also be positive. Moreover, the restrictions on the zeros and poles are sym-
metrical, so that the interchange of zeros and poles which occurs when an
impedance is replaced by its reciprocal does not affect the satisfaction of the

conditions of physical realizability. It therefore follows that if a passive

impedance is physically realizable, its reciprocal is also realizable.

196



THE DESIGN OF IMPEDANCE FUNCTIONS 197

In ordinary networks, a suitable structural form for the reciprocal imped-

ance can be found by the familiar procedure exemplified by Fig. 10.1.*

Each series connection is replaced by a parallel connection, and vice versa.

The individual elements are found by replacing resistances by resistances,

inductances by capacities, and capacities by inductances, in such a way
that the product of corresponding resistances or corresponding inductances

and stiffnesses is always constant. In Fig. 10.1 the constant product of

corresponding impedances, including the driving point impedances, is

taken as R%.

We can regard the type of inverse network illustrated by Fig. 10.1 as the

structural inverse of the original network. Evidently the procedure which

has been suggested for finding the structural inverse is not a general one.

For example, since it considers only series and parallel connections, it offers

nJULn

rJUMSbr
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D, R2

<S>

Ro Ro

Ro/Rz Ro'ri

A V

RVLj
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Fig. 10.1

no means of finding the inverse of a Wheatstone bridge. A structural

inverse of a bridge network can, however, still be found by an extension of

the original process. The extension depends upon the consideration of the

network as a geometrical diagram of lines and points by means of which the

plane is divided into areas. Physically, the points represent network junc-

tions and the lines the various elements connecting them, while the areas

represent closed meshes in the circuit. The process of finding the inverse

network consists broadly in an interchange of areas and points. A new
point is taken in each area and each such new point is connected with each

new point in the neighboring areas by a branch which is the inverse of the

branch separating the corresponding areas. The process is illustrated by
Fig. 10.2, the new points being A, B, C, and D. It will be seen that the

inverse of the Wheatstone bridge is another bridge.

* See, for example, O. J. Zobel, B.S.T.J., Jan., 1923, and July, 1928. A good
textbook reference is Guillemin, " Communication Networks," Vol. II, p. 203,
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In spite of this generalization a structural inverse cannot befoundfor every

network. No structural inverse exists, for example, for the Brune network

described in the previous chapter since we cannot find the equivalent of a

pair of perfectly coupled capacities to represent the reciprocal of the coupled

coils in the original network. Moreover, as R. M. Foster has shown,* certain

kinds of network configurations may not be representable as configurations

of points, lines, and areas on a plane, in the manner assumed by the pre-

ceding discussion. No structural inverse exists for such networks even

when mutual inductance is ignored.

Although a structural inverse is not always obtainable, the analytic

argument remains valid. If we disregard the structural relationship,

therefore, we can always find some network whose impedance is the recipro-

Fig. 10.2

cal of the impedance of any given network. For example, the inverse of a

Brune network is another Brune network. This can be illustrated by the

networks shown by Figs. 9.15 and 9.17 of the preceding chapter. The first

of these corresponds to the impedance Z = (2p
2 + p + l)/(p2 + p + 2).

The second was developed to represent the impedance Z\ of (7-17) in

Chapter VII. If we remove the parallel resistance at its input, however,

it represents the impedance Z2 of the same set of expressions, and satisfies

the equation Z2 = \{p
2 + p + 2)/(2p

2 + p + 1). Thus if this branch

is removed the two networks become inverse structures of impedance

product \.

This discussion has been directed, for simplicity, at passive networks.

There is evidently no difficulty, however, in extending it to negative

* " Geometrical Circuits of Electrical Networks," Trans. A.I.E.E., June, 1932.
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impedances or to active impedances belonging to what was described as

Class II in the preceding chapter. If we turn to Class III, on the other

hand, the restrictions on the zeros and poles of immittance are no longer

symmetrical. Only the zeros need be confined to the left half-plane.

Nevertheless, the impedance functions of Class III« and the admittance

functions of Class III£ are evidently inverse in a certain sense. The differ-

ence is merely that in going from Class III« to Class III£ or vice versa, the

source as well as the network itself must be reciprocated, while we have
thus far assumed that the source itself would remain unaltered. If this

change in the source is regarded as permissible, therefore, the general result

can be summed up in the

Theorem: Corresponding to any physically realizable impedance
expression there is an identical physically realizable admit-

tance expression, and vice versa. The transformation from
one mode of expression to the other need not include the

generator if the original impedance or admittance is both
open-circuit stable and short-circuit stable.

If active impedances are represented by combinations of passive net-

works and negative resistances, as was done in the preceding chapter, the

previous remarks on the structural inverse of a given network can evidently

be carried over to the general case without change. The problem of finding

the structural inverse of a circuit containing vacuum tubes explicitly has
not been studied.

10.3. Complementary Networks

In addition to the inverse of a given immittance function we can also

speak of its complement. The complement may be defined by the require-

ment that the sum of the original function and its complement must be a
real constant. The complement will exist as a passive impedance, pro-
vided we meet the requirements of the following

Theorem: A passive complement can be found for any immittance
function if the prescribed function has no poles in the right

half-plane or on the real frequency axis and if the sum of the
prescribed function and its complement is chosen at least

as great as the maximum value of the real component of the
prescribed function on the real frequency axis.

The proof of the theorem is omitted here, since it can readily be obtained
by a repetition of the methods used in the previous chapter. If we take
as an example a passive impedance the requirement means simply that the
impedahce must be of minimum reactance type and that the final resist-
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ance must be at least as great as the maximum resistance of the original

structure.

The familiar constant resistance combinations of ordinary network

theory represent simple special cases of the complementary relationship.

An example is given by Fig. 10.3.
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10.4. Partial Fraction Expansion of a General Impedance

We saw in the previous chapter that poles of impedance or admittance

on the real frequency axis could be detached from the complete impedance

expression and represented separately by reactive networks in series or

parallel with the structure as a whole. The same process can be extended,

at least formally, to the other poles of impedance or admittance also. The

representation of the network impedance which is thus secured is particu-

larly valuable for theoretical purposes. Its utility in practical problems

is restricted by the fact that in the most important special case, that of

passive circuits, it does not invariably lead to a passive network to repre-

sent a passive immittance function. Even so, however, it is useful in many
situations.

It will simplify discussion to restrict our attention to passive circuits

and to assume that the prescribed function is an impedance. Let it be

supposed, then, that the poles of the impedance are represented by the

points pi • • • p„. In order to avoid complications in exposition, we will

also assume that all the poles are simple. The procedure is essentially

similar to that which was followed in connection with equation (9-8) of

Chapter IX. Corresponding to any particular pole pj, we can define a

quantity Cj by

It is easily seen that Cj is equivalent to the quantity which was called Aq

in the preceding equation (9-8). We can therefore conclude from the

discussion of this equation that Cj/ {p — pj) affords a representation of the

pole pj. In other words, the quantity Z — Cj/(p — pj) will have no pole

at pj. Let us suppose that all the poles are removed from the original

impedance expression by the repeated application of this process. The

quantity which remains then has no poles anywhere in the complex plane,

and it follows from general function theoretic principles that it must be a
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constant.* We can easily show that the constant is a real quantity or, in

other words, a resistance.! If we represent it by RQ this is equivalent to

saying that the impedance can be represented by the formal expansion

Z = Ci +
p — pi p — p2

+ ••• +
P - Pn

+ ^0- (10-2)

As equation (10-2) stands, it suggests that the impedance can be repre-

sented by a number of networks in series, each network corresponding to

one term in the expansion. Whether or not such a representation is

actually possible with a passive network depends essentially on the con-

stant i?o- In order to represent any term in the expansion as a simple

passive network, it must, of course, meet the condition that its individual

resistance characteristic be positive at all real frequencies. If the individ-

ual term fails to meet this condition as it stands, it may still be possible to

represent it as a passive network if we can add to it a sufficiently high

Cjhj
l-AAA/W—

i

CjltiJ'fJ
rWAVn

Fig. 10.5

resistance, which must, of course, be subtracted from the R term, to satisfy

the resistance condition. The essential requirement which must be satis-

fied is, therefore, that R be large enough to allow all the constituent net-

works to furnish a positive resistance at real frequencies without leaving a

negative resistance in series with the structure as a whole. There is a close

analogy between this result and a proposition in four-terminal network

theory. As we will see later, the transmission characteristics of a general

four-terminal network can always be represented by a number of simple

structures in tandem provided the general level of loss in the original net-

work is high enough to allow each of the constituents to furnish a positive

loss at all frequencies.

In order to illustrate this relationship, let us suppose that pj is found on

the negative real axis. It is then easy to show that the corresponding Cj

must be a real quantity. If Cj is positive, the term Cj/(j> — pj) can be

* Liouville's Theorem— see any text on function theory.

"( As (10-2) indicates, the constant is equal to the resistance of the network at

infinite frequency.
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easily identified with the parallel combination of resistance and capacity
shown by Fig. 10.4. If Cj is negative this representation is non-physical.

By adding the resistance Cj/pj, however, the expression becomes
Cjp/pjiP — Pi), which corresponds to the inductance-resistance network
shown by Fig. 10.5.

If the pole is complex, a more elaborate analysis is required. Complex
poles, of course, occur in conjugate pairs, and the pairs must be kept to-

gether if we are to secure a physical network. Let us suppose that a
particular pair of conjugate poles is written as pa ± ipb . It is easily shown
that the corresponding C's must also be conjugate quantities. If we repre-

sent them as Ca ± iCb we can write the component impedance Zj as

Z,=
Ca + iCb +

Ca — iCb

= 2

- (pa + ipb) P - (pa ~ ipb)

Cap — (Cgpg + Cbpb) ^

P
2 ~ 2pap+ (pl + pt)'

(10-3)

In many cases, the real component of (10-3) will not be positive for all

real frequencies. If we add enough resistance, however, a passive structure
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Fig. 10.6

U/w—|

(—

l

Fig. 10.7

L/wvJ LvvyJ

Fig. 10.8

can be secured. When the added resistance is the least possible, the struc-

ture will take the form of the last stage of a Brune network, as shown by
Fig. 10.6. If the resistance component is great enough, other configura-

tions are also possible. In general, they will contain one inductance, one
capacity and three resistances. The particular configurations which can
be used, however, depend upon the numerical values of the constants in

(10-3). Typical circuits are illustrated by Figs. 10.7 and 10.8.

°-/wwH * ..H* .. r LJ^f-rkjUbH H KJU^-HH
Fig. 10.9

These considerations can evidently be extended to all the poles. If we
adopt in particular the Brune representation of the complex poles and
regard the structures of Figs. 10.4 and 10.5 as special cases of the Brune
network, the complete circuit takes the form shown by Fig. 10.9. The
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Fig. 10.10

corresponding parallel combination obtained from an admittance analysis

is given by Fig. 10.10.

As the figures show, the resistance or conductance which remains after

all the poles of immittance have been represented

may be either positive or negative. It will, of

course, be positive if the original resistance or

conductance is large enough. Since the minima

of the various component resistance or conduct-

ance characteristics will ordinarilyoccurat different

frequencies, on the other hand, we may expect c

that the sum of the component characteristics will

be substantially greater than zero at all points on

the real frequency axis. We may therefore expect

that the final branch will be negative if the original

immittance approximates the limiting minimum
resistance or minimum conductance type. This

is, of course, a serious practical limitation. In

theoretical work, however, the fact that the com-

plete immittance is exhibited as the sum of a

number of very simple terms may still make the structure quite useful.

For these applications, at least, we can therefore formulate the result as the

Theorem: A passive immittance having no multiple poles can always

be represented as the sum of a number of passive immit-

tances, each of which is at most of the second degree, and a

positive or negative real constant.

The extension of this analysis to active impedances involves only two

considerations. In the first place, if the impedance is not both short-circuit

stable and open-circuit stable some of the poles either of its impedance or

admittance will be found in the right half-plane. In the corresponding

expansion the component networks representing these poles can still be

built, but they will not be passive structures. The second consideration

is the obvious one that if we are dealing with an active circuit anyway the

fact that the final resistance or conductance term may be negative should

be of no particular consequence.

10.5. Reconstruction of a Passive Impedance from a Knowledge of Either

Component*

The discussion in the previous chapter shows that the resistance and

reactance characteristics of a passive network can be varied independently

* As a general reference to transformations of this sort, see Darlington, " Synthesis

of Reactance 4-Poles," Journal of Mathematics and Physics, Sept., 1939.
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within certain limits. Thus, we can change the resistance characteristic of

a network by a constant amount without changing its reactance, and we can

add or subtract a reactance corresponding to poles on the real frequency

axis without affecting the resistance. These are, however, the only two

ways in which the two components can be varied independently. If we
restrict ourselves to minimum resistance and minimum reactance networks,

the resistance and reactance are uniquely related. If we know either one,

we can determine the other, and therefore the impedance as a whole.

Since we are considering the real and imaginary components of the

impedance at real frequencies, it is simplest to write Z as a function of w
rather than as a function of^>. In general, of course, Z can be represented

as the ratio of two polynomials in p. On the real frequency axis the even

powers in each polynomial will be real quantities and the odd powers pure

imaginaries. We can therefore write

z^ = Hfi' (1(M)

where A, B, C, and D are polynomials in o>
2 with real coefficients. If we

rationalize this expression in the usual manner by multiplying the numera-

tor and the denominator by C — iuD, the result becomes

„, x
AC + w2BD

,
. BC - AD ,. n ..

z(" } = c* +^ + «*W+JW' (10-5)

The resistance is thus an even rational function of co with real coefficients,

while the reactance is a similar function multiplied by to.

Our problem is that of finding the complete expression for Z from a

knowledge of either of its components. Let it be supposed that we know

the even rational function representing the resistance. We begin by

expanding this expression in partial fractions in the manner described in

the preceding section. Since the denominator is an even function of to,

the poles must occur in positive and negative pairs. To each pole, more-

over, must correspond its conjugate since the coefficients in the denomina-

tor are all real quantities. The poles thus occur in sets of four symmetri-

cally placed about the origin. In the special case in which poles are found

on the imaginary frequency axis the sets of four may reduce to pairs. The

poles might also reduce to pairs, on the face of the situation, if they occurred

on the real frequency axis, but if the assumed resistance characteristic corre-

sponds to a physical network, there can be no such poles.

The poles of the resistance function which lie below the real frequency

axis* were introduced when the numerator and denominator of the original

* That is, below the real axis in the frequency plane, or to the right of the imagi-

nary axis in the p-plane. Cf. the relations described in connection with Fig. 2.2.
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impedance were multiplied by C — iaD. They must be eliminated in

reconstructing the expression for Z if the final result is to correspond to a

physical network. Let us suppose that the poles above the axis are repre-

sented by cox • • • oo„ and the corresponding residues, i.e., the C/s of (10-2),

by C\ • Cn . The poles below the axis will then be the conjugate points

Z>i • • • £on , while it is easily shown that their residues will be the correspond-

ing conjugate quantities Cx
• • • Cn . If we assign the constant R of (10-2)

equally to the two groups of poles this allows us to write the complete

partial fraction expansion corresponding to (10-2) in the symmetrical form

*(«)
r£^_ + §l +r£^ + fl. (io-6)
|_ i co — wj 2 J L i u> — "i ^ J

The two bracketed expressions in (10-6) evidently represent conjugate

quantities on the real frequency axis. Each, therefore, provides half the

final resistance characteristic. If we multiply the first by two we secure

the required impedance expression in the form

Z = £ ~^- + R . (10-7)
i

The fact that this is actually the sought-for expression for the impedance is

easily established. It evidently gives the right resistance characteristic

and its poles are in the proper portion of the plane. The fact that the zeros

are also in the proper half of the plane follows at once if we remember that

the resistance must be positive on the real frequency axis and make use of the

general theorem on the location of the maxima and minima of an analytic

function. It is easily shown also that (10-7) is the only valid impedance

corresponding to the original resistance characteristic if we exclude the

possibility of introducing pure reactance networks by the addition of poles

on the real frequency axis.

If we begin with the reactance characteristic, the procedure is essentially

the same. The only distinction arises from the fact that because of the

presence of the multiplier iw, the residues of the poles below the real fre-

quency axis are the negative conjugates of the residues above the real

frequency axis. Along the real axis, therefore, the sums of the contribu-

tions of the two groups of poles have real components of opposite sign and

imaginary components of the same sign. A constant real quantity can

therefore be added to one group and its negative to the other without affect-

ing the result. This corresponds, of course, to the fact that the reactance

component of any network is not changed by the addition of an additive

constant to its resistance.

The extension of the analysis to active impedances evidently presents, in

general, no great difficulty. It is necessary to assume, however, that the
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desired type of stability is appropriate for the restrictions on the poles of
the given functions. Thus if we begin with a resistance we can readily

construct a corresponding complete impedance function which will be open-
circuit stable. It is not so easy, however, to determine an impedance which
is short-circuit stable but not open-circuit stable since the poles of the short-

circuit stable function may occur in both halves of the plane and there may
be several ways of separating the partial fraction expansion of the resistance

into two halves.

10.6. Choice of Coefficients in Impedance Expressions

Thus far in our discussion we have considered the physical restrictions on
possible impedance expressions and some of the ways in which a definite

circuit corresponding to any particular impedance can be obtained. We
have not, however, considered the design problem, which is that of choosing

an expression for the impedance to simulate a characteristic which has

already been prescribed. There are a number of ways in which this prob-
lem can be attacked, especially when the characteristic we have in view is in

some analytically simple form. Space does not permit consideration of all

these possibilities. For the sake of completeness, however, the simplest

and most direct attack is outlined below.*

Let it be supposed that the rational function representing the impedance
is written as

Z-R + ,X-
Bo + Bip + B2p2+ +Bmpm

- (10-8)

If we replace p by ia> on the real frequency axis and multiply through by
(B + • • • + Bmp

m
), we can equate real and imaginary parts separately to

secure the pair of equations

(AQ - A2w
2 + A±w4

) - R(B - -S2W
2 + 54"

4
)

+ Xu{B x
- B3w

2 + 55co
4

) = 0,

(10-9)

(Ar
- A3a>

2 + A5co* ) - R(Bt - B3a,
2 + 55co

4
)

(B - 52o>
2 + 54co

4
) = 0.

03

Now let co, R, and X in these expressions be assigned particular values

chosen from the characteristic we are trying to meet. If we choose a

sufficient number of sets of values of these three quantities the result will

be a system of simultaneous equations in the A's and B's whose solution

* The method which is described is essentially a modification of a method due to

O. J. Zobel. See " Distortion Correction in Electrical Circuits," B.S.T.J., July, 1928.
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gives a network approximating the desired impedance. Since the equations

are all linear the solution is relatively simple.

The most straightforward process is obtained if we use both of equations

(10-9) at each matching frequency. In some instances, however, a better

overall characteristic is found if we choose twice as many matching fre-

quencies and apply the equations alternately. Since equation (10-8) will

obviously not be affected if the numerator and denominator are divided

through by any constant, one of the A's or B's is arbitrary and can be

conveniently set at the value unity. The process evidently carries with it

no guarantee that the resulting impedance expression will be physical.

Since, as we have already seen, the resistance and reactance characteristics

of a physical network can be chosen independently only within narrow

limits, this is inherent in the nature of the problem.

The same general method can also be applied to the simulation of either

component separately. For example, ifwe begin with a resistance function

of the form

we can evidently choose appropriate values of the constants by means of

the set of simultaneous linear equations obtained by substituting special

values of w and R in the equation

(A + A^2 + + Amo>
2m

) - R(B + B^2 + + Bmo>
2m

) = 0.

(10-11)

The expression for the complete impedance can then be built up from the

formula for R by the method described previously.

With this procedure the requirements for physical realizability are much
less onerous than they were before. We must still be careful, however,

that the rational function which is obtained for R has no poles of any
order, and no zeros of odd order, on the real frequency axis. Although this

procedure appears to take cognizance of only one component, it may still

be appropriate for the simulation of a complete impedance. Since the

minimum reactance and the resistance characteristic of a network are

always dependent on one another, there is no essential loss of generality in

restricting ourselves initially to the resistance characteristic alone. We
can always control the reactance characteristic to some extent by the final

addition of a series reactance network.

The process of resistance simulation is particularly simple if we make use

of the fact that networks whose physical configuration is that of a " con-

stant k " high-pass or low-pass filter terminated in a resistance furnish input

resistances of the type of (10-10) in which all the terms in the numerator
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except the first or last are zero.* The analytic problem is then that of

simulating a prescribed characteristic by a polynomial, and ordinary

polynomial or Taylor's series methods are applicable.

10.7. Transformations of the Frequency Variable

If we turn back to such general equations as (1-2) of Chapter I, we
observe that aside from the resistance terms, every quantity is either of the

form Lijp or of the form Dij/p. The impedance as a whole, of course, is

some function ofp which depends upon the particular values assigned to the

L's, D's, and R's. Now suppose that in the given network we replace each

inductance by an impedance varying with frequency as some function/(p)

and each capacity by an impedance varying as l//(p). We will also sup-

pose that the various impedances replacing the original inductances or

capacities are in the same proportions as the original inductances or capaci-

ties themselves. Evidently this merely replaces p hyf(p) in every equa-

tion, so that the impedance Z(p) becomes transformed into Z[f(p)]. In

other words, if we know the impedance function of a given structure, we

can find immediately the impedance function of the structure obtained

when each inductance is replaced by a proportional impedance of some

other type, and each capacity by the related inverse impedance. It is

merely necessary to replace p in the original impedance function by the

expression for the impedance which replaces the inductances. While the

result has been stated only for driving point impedances, it evidently holds

also for the transmission properties of a network.

So far as the formal statement of the principle goes, each inductance

might be replaced by a dissipative impedance, such as that illustrated by

Fig. 10.11. In practical applications, however, the principle is of impor-

tance chiefly when each inductance is replaced by a
[~*^ network of pure reactances. This can be explained

[.^ . . J from the fact that if we deal with a network of pure

reactances, both the original variable p and the new
y> 1 n 1

1

variable f{p) assume only pure imaginary values at

real frequencies. The real frequency characteristics of the transformed

network can therefore be obtained from the real frequency characteristics

of the original structure merely by correlating corresponding values of p
and/(^>), whereas if we use a dissipative network the characteristics of

the transformed structure must be obtained by computation. Since the

most elaborate reactive network can merely run through all reactance

values from — oo to + °° repeatedly, where the original variable p ran

through such values only once, the transformed characteristics are, at

* Further details are given in " A Method of Impedance Correction," H. W. Bode,

B.S.T.J., Oct. 1930.
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most, repeated copies of the original characteristics, with some distortion

of the frequency scale and perhaps an inversion in frequency.

The best illustrations of this principle are found in filter theory. For
example, if we begin with the low-pass structure shown by Fig. 10.12^,

the simplest transformation is effected if we make/(p) = k/p where k is a

real constant. This replaces each inductance by a capacity and each

capacity by an inductance as shown by Fig. 10.125. The characteristics

are the same as those of the original structure except that the frequency

scale is inverted and positive and negative frequencies are interchanged.

In other words, the new structure is a high-pass filter. The relation

between any two corresponding frequencies, such as the cutoffs of the two
structures, on the absolute frequency scale,

can, of course, be controlled by means of the °_>JX)UU-

constant k.

The next simplest transformation is

Zip) — k(p/ur + wr/p). This replaces each
inductance by a series resonant circuit, and
each capacity by an anti-resonant circuit, as

indicated by Fig. 10.12C The result is

easily seen to be a band-pass filter. The
resonant frequencies of the networks replac-

ing the original coils and condensers corre- ,,

spond to zero frequency in the low-pass °-JLWLr\ bnJLMjb-l hT^J-i
filter and represent the center of the trans- £ Air^^ S
mitted band. As we go either way from £*]_ C_r §
this frequency, we secure a distorted replica ST

\ f
of the original low-pass filter characteristics. c

The frequency at which the center of the FlG 1012
band is found is, of course, determined by
the constant ur , while the width of band can be controlled by the constant k.

These relations are shown in more detail in Fig. 10.13. The solid and
broken lines at the top of the figure represent respectively the real and
imaginary components of the complete filter characteristic. As the
figure is drawn the characteristic itself is regarded as fixed and the changes
which occur in going from one type of filter to another are expressed by
distorting the frequency scale, as indicated by the horizontal axes at the
bottom of the drawing. The topmost axis represents the scale in the low-
pass case. Since it may be taken as a reference it has been drawn in the
usual arithmetic fashion, without distortion.

In order to express the correspondence among the three characteristics

completely it is necessary to draw both the positive and negative halves of
the real frequency axis in the low-pass case. The fact that the positive



210 NETWORK ANALYSIS Chap. 10

half is the one of direct design interest is indicated by drawing it very

heavily. Since the real and imaginary components of the characteristic

must be respectively even and odd functions of frequency in accordance

with the general principle outlined in previous chapters, the relations

between the two halves are easily determined.

The second horizontal axis gives the scale appropriate for the high-pass

filter. The constant k has been chosen as unity. The transformation is

essentially merely a matter of replacing the frequencies in the low-pass case

-3.0 -2.0 -1.0 .0 1.0 2.0 3.0

0.33 0.5 1.0 2.0 °° -1.0 -0.5 -0.33

0.5 0.62 0.78 1.0 1.28 1.5

Fig. 10.13

2.0

d) Low Pass

cj H'.^K Pass

^ Band Pass
u).

by their reciprocals, but in order to secure an exact correspondence the

positive frequency half of the high-pass scale must be identified with the

negative frequency half of the low-pass scale. The bottom axis gives the

band-pass scale, the constant k being chosen as two. Here the positive

and negative halves of the low-pass scale correspond respectively to positive

frequencies above and below the center of the band in the band-pass scale.

10.8. Frequency Transformations in Amplifier Design

These frequency transformations will be used in later chapters to simplify

the discussion of amplifier design methods. Most practical amplifiers are

called upon to transmit a band extending from one finite non-zero frequency

to another. For purposes of analysis, however, we will take as our point of

departure a structure transmitting from direct current up to some pre-

scribed frequency. This will be called the equivalent low-pass amplifier.



THE DESIGN OF IMPEDANCE FUNCTIONS 211

The modification of the characteristics of the equivalent amplifier to suit

the actual requirements can be made by either of two methods, depending

upon the band width of the actual amplifier on a logarithmic frequency

scale. If the band is relatively broad it is simplest to suppose that the

characteristics of the equivalent amplifier are the same as those of the

actual structure at all high frequencies and to superimpose upon them a set

of low-frequency characteristics to take account of the fact that the trans-

mission band of the actual amplifier does not extend to zero frequency.

The required low-frequency characteristics can be obtained from any

suitable high-frequency design by drawing the characteristics on a recipro-

cal frequency scale, using the transformation from low-pass to high-pass

filters which was described in the preceding section. This is illustrated by
Fig. 10.14. The solid line represents the loop gain characteristic in the

original equivalent low-pass design and the broken line the modification

in the characteristic near the lower edge of the useful band.

frequency v' frequency

Fig. 10.14 Fig. 10.15

If the band of the actual amplifier is relatively narrow, on the other hand,

it is more desirable to treat the complete characteristic as a single unit,

obtaining it from the equivalent low-pass structure by means of the trans-

formation relating low-pass and band-pass filters. Fig. 10.15, for example,

shows a band-pass characteristic corresponding to the low-pass characteris-

tic of Fig. 10.14. Since the low-pass to band-pass transformation always
leads to characteristics which are symmetrical about the center of the band,
this leaves amplifiers with dissimilar characteristics at the upper and lower

edges of the band to be treated directly. Narrow-band amplifiers with

dissymmetrical requirements, however, are very exceptional.

These frequency transformations have been introduced here as an ana-

lytic simplification. They are, however, frequently convenient also in the

preliminary stages of an actual design, since the branches of the equivalent

amplifier are usually more easily computed than those of the actual struc-

ture.

10.9. Principle of Conservation of Band Width

The low-pass to band-pass transformation has one simple property of

considerable importance. This is the fact that the transformation from a
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coil to a resonant circuit or from a condenser to an anti-resonant circuit

does not affect the band width, in cycles, over which the impedance or

admittance of the branch stays within any prescribed limits if we keep the

coil unchanged in the first case and the condenser in the second. For exam-
ple, in a low-pass circuit the susceptance of a given capacity C will be less

than some fixed value B between zero and a point o> for which Bo = t» C.

In the band-pass circuit the susceptance of the corresponding branch can be

written in general as

coS = w2C - y • (10-12)

B will assume the values ±i?o at two points on opposite sides of the band.

At these points, which may be indicated by 01 and co2 , (10-12) becomes

co25 = cc2C — —

»

(10-13)

— oiiBo = «xC — — •

Subtracting the second equation from the first gives

(col — «?)C = («2 + u>i)B = («2 + a>i)co C
or

<°2 — «i = o>o- (10—14)

The frequency interval between corresponding points in the band-pass

characteristic is thus the same as the equivalent interval* in the low-pass

characteristic no matter how the mid-band frequency, which depends upon

L, is chosen. A similar result evidently follows if we keep the inductance

constant in the transformation from a simple coil to a series resonant circuit.

The transformation to a single band-pass circuit is the only one of

particular engineering interest. As a matter of fact, however, similar

relations also hold if we replace an individual coil or condenser by a re-

active network of any arbitrary complexity, subject only to the condi-

tion that the network becomes equal to the element that it replaces at

infinite frequency. The impedance or admittance of the branch will

* This interval is, of course, only the positive frequency part of the low-pass band.

Since the band-pass characteristic was compared with the sum of the positive and

negative frequency characteristics of the low-pass structure in Fig. 10.13 it may
appear at first sight that the band-pass interval should be doubled. The apparent

discrepancy is explained by the fact that there must be a negative frequency band-

pass characteristic also. The total interval on the complete real frequency axis in the

two cases is the same.
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then lie within specified limits in a number of discrete bands, whose

breadth and arrangement depend upon the resonances and anti-resonances

chosen for the branch. The sum of all these intervals, however, is equal

to the corresponding interval for the original inductance or capacity.

The importance of these conclusions will appear more clearly in later

chapters. It will be shown that, broadly speaking, most of the characteris-

tics of feedback amplifiers are ultimately limited by the parasitic elements

in the circuit, which are principally shunt capacities to ground and second-

arily series inductances. For example, tube gains are ultimately limited

by interstage capacities. Input and output transformers, at least at high

frequencies, are restricted principally by leakage inductance and high side

capacity. The amount of feedback which can be secured is limited in the

same way by the miscellaneous parasitic elements in the feedback loop.

Evidently, in all these cases the result just established can be applied to the

parasitic elements when they are resonated as part of the transformation

from a low-pass to a band-pass system. Since the relative impedance levels

of the various branches in the complete circuit are not affected by the trans-

formation, however, the reactance or susceptance of any branch containing

a parasitic element is correlated with any* overall response characteristic of

the circuit in the same way after the transformation as it is in the low-pass

structure. With the understanding that this is what is meant, therefore,

the general result can be expressed as the

Theorem: The width of the frequency band, in cycles, over which a

given response can bemaintained in a circuit of given general

configuration containing prescribed series inductances and
shunt capacities is independent of the location of the band in

the spectrum.

frequency

Fig. 10.16

* That is, any characteristic which can be determined from single frequency imped-

ance values of the branches. This would evidently eliminate a delay, for example,

since the result here depends both upon the impedances of the branches and upon

the rate at which they vary with frequency. It is also assumed, of course, that the

fact that the sign of such a response characteristic as a reactance may be opposite, on

one side of the band, to that obtained from a low-pass circuit is immaterial.
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The conservation of band width in the low-pass to band-pass transforma-
tion is illustrated by Fig. 10.16. The characteristics are the same as those
originally shown in Figs. 10.14 and 10.15. Typical equal intervals in the
two cases are indicated by the horizontal lines A, B, and C.

10.10. Frequency Transformations to Dissipative Impedances

It was suggested in connection with Fig. 10.9 that frequency transfor-

mations which replaced the reactive elements in the original structure by
dissipative impedances were of comparatively little value. This is gener-
ally true. There are, however, two particular cases of such transformations

of somewhat special interest. The first occurs when the original structure

is composed only of reactances. In this case the transformation method
can be used to generalize Foster's results for networks of pure reactance to

include networks of any two types of impedance elements whatever. It is

not necessary to assume, as was done in the previous discussion, that the

impedance elements replacing the coils and condensers, respectively, in the

original structure are inverse.

The rule for making the transformation can be expressed most easily in

terms of equation (9-12) of Chapter IX. The structure to which this

equation refers reduces to an inductance at high frequencies. Evidently,

the p which multiplies the whole right-hand side of the equation can be

thought of as the expression for the impedance of this inductance. Simi-

larly, the p
2 terms which appear in the various factors of numerator and

denominator correspond to resonances between the inductances and capaci-

ties of the network and can be thought of as the ratio between the imped-
ance of an inductance and that of a capacity. It can be shown by a more
detailed analysis that this identification is correct. Evidently, therefore,

if we replace the inductances and capacities in a network of pure reactances

by proportional impedances of any other two types the new impedance
expression can be obtained from the

Theorem: The expression for the impedance of a network made up of

any two kinds of impedance elements can be obtained from

the expression for the impedance of a corresponding net-

work of pure reactances by replacing the multiplier^) in the

pure reactance expression by the impedance which corre-

sponds to a unit inductance and by replacing the p
2 terms

in the rest of the pure reactance expression by the ratio of

the impedances corresponding to a unit inductance and
to a unit capacity.

Since the original reactance expression was derived for an L-L configuration

it is assumed in the statement of the theorem that a structure of this type
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is in view. Modifications to suit other cases, however, are easily made by

the methods described in the preceding chapter.

As an example of this theorem we may consider a network of inductances

and resistances. The transformation to such a structure from a network

of pure reactances leaves a unit inductance as a unit inductance but a unit

capacity is replaced by a unit resistance. Thus the multiplier p in the

expression for a pure reactance network is unchanged, but each p is

replaced by p. Substituting in (9-12) of Chapter IX, the new impedance

expression becomes

* (p - pi)(p - pl) (p - pl-i)

As a second example, let the network be composed of capacities and

resistances. This leaves a unit capacity as a unit capacity while a unit

inductance is replaced by a unit resistance. In the impedance formula,

the multiplier p is replaced by unity and each p
2
is replaced, as before, by p.

The result is

z= (P-Pl)(p-Pt)---(P-Pl)
(1(M6)

(p - p\){p - Pi) • • (P - Pl-x)

In both (10-15) and (10-16) the zeros and poles are found on the negative

real p axis and occur alternately. The only distinction between the two

expressions is the fact that as we proceed along this axis, starting from the

origin, the alternation begins with a zero when the network is made up of

inductances and resistances and with a pole when the network is made up of

capacities and resistances.

nJUb-j pJKLq r^*-""^

-AVW—iJUlJU—
—WW—OLO^—

-^wvv—uuuu-WW

—

Fig. 10.17 Fig. 10.18

Both types of networks can be represented in partial fraction form.

Corresponding to the network of inductances and resistances, for example,

we may secure either of the configurations shown by Figs. 10.17 and 10.18.

These expansions have already been described in substance, in connection

with Figs. 10.3, 10.4 and 10.5 of the present chapter. As the analysis

shows, the poles of inductance-resistance and capacity-resistance networks,
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although they are both found on the negative real axis, correspond to C/s,
or residues, of opposite sign. When we add together corresponding terms
from a capacity-resistance and an inductance-resistance network, as in

Fig. 10.3, therefore, the poles may cancel out, leaving merely a constant.

10.11. Effects of Parasitic Dissipation

The second situation in which frequency transformations which replace

reactive elements by dissipative impedances may be useful occurs when we
are trying to express the effects of the normal parasitic dissipation of coils

and condensers in the formulae for the network. For example, if R is the

parasitic resistance associated with a coil L we can write the impedance of

the coil as pL + R = (p + R/L)L. The effect of dissipation can thus be
represented by replacing p by p + R/L in the impedance of the non-

dissipative coil. Similarly, the impedance of a capacity including a para-

sitic conductance G can be written as l/(pC + G) = \/(p + G/C)C, and
is the same as the impedance of a non-dissipative capacity with p + G/C
substituted for p.

In most networks the ratio R/L is about the same for all coils and the

ratio G/C is about the same for all condensers. If, in addition, the two
ratios are equal to one another the network may be spoken of as one having

uniform dissipation. It is less often true that this second requirement

is satisfied by actual circuits. In ordinary networks, however, the effects

of dissipation are much the same whether we regard the dissipation as being

concentrated principally in the coils alone or the condensers alone or assume
it to be equally divided between elements of the two types.* Under these

circumstances we can evidently represent the effects of dissipation by
replacing p by p + § (R/L + G/C) in the impedance expressions for both
coils and condensers. This therefore leads to the

* This can be taken as a matter of experience, but it can also be justified, for many
networks, theoretically. Thus ifwe go back to the energy analysis of Chapter VII it is

evident that the effects of parasitic dissipation must be attributed to the power loss

in the dissipative elements. The ratio of the power loss, PR, in a dissipative coil to

its stored energy, \PL, however, is simply 2R/L, while in a dissipative condenser the

ratio is 2G/C. In a complete network, therefore, the dissipated power must be

(2R/L)T+(2G/C)F, which can also be written as (T + V) (R/L + G/C) +
(T — V) (R/L — G/C). The first term of this expression evidently represents the

average dissipation assumed above while the second term gives the error in this

assumption. Since T — V is proportional to the input susceptance by (7-31) of

Chapter VII, the error will be negligible for any network whose impedance is approxi-

mately a pure resistance. Even if this condition is not met the second term will be

negligible in comparison with the first, as shown by (9-15) to (9-17) of Chapter IX, if

the network is a sharply varying two terminal reactance, or, as shown by later equa-

tions of similar type, if the network is any electrically long filterlike structure.
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Theorem: If a network can be regarded as uniformly dissipative any

of its actual characteristics can be obtained by replacing p
by p + %(R/L + G/C) in the equations for the corre-

sponding characteristics in the absence of dissipation.

Fig.

I

\

\

\

\

10.19

In a mathematical sense the theorem states in

effect that the changes due to dissipation can bs

represented by evaluating the function on a line

somewhat to the right of the real frequency axis

rather than on the real frequency axis itself.

This is illustrated by Fig. 10.19. The light solid

line represents the new axis when R/L + G/C is

constant with frequency and the broken line the

result if R/L + G/C increases with frequency,

which is the usual case in practice. As an alter-

native, we can of course say that the computa-

tions are still made on the real frequency axis

but that the function itself, including its zeros,

poles, and other reference points, has been displaced an equivalent dis-

tance to the left.

These relations lead to a simple method of designing

networks to give automatic compensation for the effects

of parasitic dissipation. The method was first used by

Darlington* in the design of filters which would give

flat transmission bands when constructed with dissipa-

tive elements. It consists in designing the network

without regard to parasitic dissipation and then trans-

lating all the zeros and poles in the impedance ex-

pressions which result \ (R/L + G/C) units to the right

in the p plane. When the effects of parasitic dissipa-

tion are included the zeros and poles move back, of

course, to their proper positions. If R and G are con-

stant with frequency the required displacement is the

same for all poles and zeros. Otherwise, it is usually

sufficiently accurate to displace each pole or zero by the

appropriate value of \ (R/L + G/C) at the adjacent real

frequency. An example is shown by Fig. 10.20, which

represents the distribution of zeros and poles of the

transfer impedance, A/Ai 2 , through a low-pass filter. The heavy line

indicates the approximate transmission band. The crosses represent poles

or infinite loss points, and the circles represent zeros, or points of infinite

x'

: :--x'

.0-0'
0-0'

-gnor

0-0

0--0'

o-d

:-*'

:
.-%'

Fig. 10.20

* loc. cit., pp. 335 ff.
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gain.* The predistortion of the characteristic to compensate for parasitic
dissipation is accomplished by moving the poles and zeros to the positions
indicated by the primes, f

In translating the zeros and poles to the right in this way it is of course
necessary to make certain that the resulting network will not be non-
physical. For example, in the illustration just described the zeros are the
roots of A and cannot be moved into the right half-plane, even in the pre-
liminary design, if we are dealing with a passive network. In this particu-
lar example there is no essential limitation on the location of the poles of the
function. If the method were applied to a passive driving point impedance,
however, it would be necessary to suppose that both the zeros and poles
of the original design were found at least %(R/L + G/C) units to the left

of the real frequency axis in order to prevent critical frequencies of either

type from entering the right half-plane as a result of the shift. The area
between the imaginary axis and a line J (R/L + G/C) units to the left thus
represents a forbidden ground within which we may not be able to permit
zeros and poles of the original design to lie if the method is to work. Other-
wise, however, the application of the method is quite general.

This frequency transformation can also be used to provide a convenient
way of estimating the effects of parasitic dissipation directly from an
inspection of the real frequency characteristics of the structure. To show
this, let it be supposed that we are interested in some particular characteris-

tic $ = A + iB. It will be assumed that $ is an analytic function of fre-

quency in the neighborhood of the point which we are investigating. Ifwe
exclude such isolated frequencies as poles or cut-offs, this still allows us to

consider almost any network characteristic we please. The method can be
applied, for example, to such diverse functions as an impedance, a voltage
ratio, an actual transmission characteristic, or an image transfer constant.
It is necessary to remember, however, that if $ is to be analytic both its real

and imaginary components must be represented. In other words, if we are

interested in such functions as the resistance or attenuation of a network,
we must also include in $ the associated reactance or phase shift.

The method depends upon the representation of the change in $
by means of a Taylor's series. As we have already seen, the intro-

duction of dissipation in the network is equivalent to replacing p, or

/», by ios + %(R/L + G/C). The variable w is therefore changed by an

* This is discussed in more detail in the next chapter. The reasons why a distribu-

tion of poles and zeros of this type should be appropriate for a low-pass filter are

beyond the scope of the present treatment.

f In practice, the poles are usually not moved since the change in their location has

relatively little effect on the distortion in the transmission band and requires an

increase in the structural complexity of the network.
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amount Aco = - i%(R/L + G/C). In terms of the customary symbol Q,

representing the average dissipation in coils and condensers, this change in

w can be written as —i<a/Q. The Taylor's series expansion for $> therefore

appears as

* = *° + (- t

Q)i; + v\-
1

Q) ^7 + ---' (1(M7)

where $ represents the characteristic corresponding to the actual parasitic

dissipation, and 4> the characteristic when dissipation is neglected.
^

In

order to apply the series, it is necessary, of course, to know the numerical

values of the derivatives. The change in co is imaginary, while ordinarily

the behavior of * will be known only along the real frequency axis. Since

$ is analytic, however, its derivatives are the same in every direction. We
can therefore evaluate them by means of the equations

d$_dA .dB d2* d2A .d2B

da) dco du> dm flco dui
+ «"; ^-^t + '^j;-. (10

"18 >

-% Pl p5 Axis! of

AO P2

where the differentiations are supposed to be made at real frequencies.

This is illustrated by Fig. 10.21. The actual displacement of co is fromiPx

to a point P2 , off the real frequency

axis. It is legitimate, however, to con-

struct the Taylor's series on the as-

sumption that we are concerned with

an equivalent real frequency displace-

ment to either of the points P3 or Pi,

obtaining the final answer by rotating

the change in o> through 90° in each
F^ 1QM

term of the series. The result is se-

cured analytically by substituting (10-18) in (10-17). This gives

w(dA .dB\ 1 JtPA .cPB\
J + iB-^ + iBo-i^ +i^-np^ + K-tf)

+ 3!^W +^) + --'- (1(M9)

Now equating reals and imaginaries separately, we find

A . ,
<*JB 1 o>

2 d2A 1 co
3 dsB

„ „ udA 1 co
2 d2B 1 co

3 #A '

,
.

B = B*-QT„-v.Q2 lJ + y.Q^ + ---' (10_21)
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Since the effects of dissipation will ordinarily be small the terms of higher
order can be dropped, leaving the convenient formulae

a ~ a^qTA (10-22)

(10-23)

%
3
C

*-

<

V
Q.
Vz
c

/
IA

fe-

/
4-

/
t A L>

10,000 20,000- 30,000

In numerical applications it is important to remember that the Q in these

expressions represents the average dissipation of the coils and condensers

and must be set equal to twice the Q of the coils alone when the dissipation

of the condensers can be neglected.

Equations (10-22) and (10-23)

show that, to a first approximation,

the change produced by dissipation

in the real component of a network

characteristic is proportional to the

slope of its imaginary component
and vice versa. For example, if we
interpret A as the resistance and B
as the reactance of a network, we
see that the resistance introduced

by dissipation should be propor-

tional to the derivative of the react-

ance characteristic and, conversely,

the reactance change is proportional

to the derivative of the resistance.

If we interpret A and B as the loss

and phase of a network, on the other

hand, (10-22) shows that the change

in attenuation produced by dissipa-

tion should be proportional to the

"time of delay." Similarly, (10-23)

shows that the effect of dissipation

upon the phase displacement depends upon the rate of change of the attenu-

ation characteristic.

An example of these relations is given by Fig. 10.22. The solid lines in

the figure give the real and imaginary components of the transfer constant

of a non-dissipative low-pass filter. This function is an unfortunate choice,

in one sense, since it has singularities at the cut-off and at the points of

infinite loss. As the figure indicates, the slope of the attenuation charac-

teristic is infinite at each of these points. In addition, the phase charac-
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teristic exhibits discontinuities at the infinite loss points, corresponding to

the change in the sign of the current delivered to the load when it passes

through zero. The formulae cannot, of course, be applied at any singu-

larity. Theoretically, they should also be inapplicable at any frequency so

close to a singularity that the singularity falls within the interval P3Pt

in Fig. 10.21, since the series in (10-20) and (10-21) will fail to converge in

this event, while for slightly more remote frequencies we should expect the

convergence to be so slow that (10-22) and (10-23) would not be useful

approximations. It turns out, however, that these formulae are at least

qualitatively correct even at frequencies very close to the singularities.

The dissipative phase and attenuation characteristics of the filter are

shown by the broken lines in Fig. 10.22. In order to make the example

roughly quantitative let it be supposed that the filter is a voice frequency

structure with a cut-off at co = 20,000. It will also be supposed that dissi-

pation in the condensers can be neglected but that the coils have a Q which

is equal to 20 at the cut-off.* The average Q which appears in (10-22)

and (10-23) is therefore 40 at the cut-off and if we suppose Q to be pro-

portional to frequency the factor u/Q can be replaced by the constant 500.

Turning first to the effects of dissipation on the phase characteristic, we

observe that inside the transmission band the slope of the attenuation

characteristic is negligible. In accordance with (10-23), the dissipative

and non-dissipative phase characteristics are almost identical in this region.

Between the cut-off and the first peak of attenuation the slope of the attenu-

ation characteristic is positive and, as (10-23) indicates, parasitic dissi-

pation reduces the phase shift. About halfway between the cut-off and the

first peak, where the slope is least, we can estimate that dA/da is about

1 neper per thousand units of co. At this point, therefore, the reduction in

phase shift is about half a radian, but it grows progressively greater as we

go toward either the cut-off or the peak. In the region just beyond the

first peak, on the other hand, the attenuation slope is negative, and the

phase shift is increased by dissipation, and so on.

Turning now to equation (10-22), we observe that dissipation increases

the attenuation in the transmission band, where the phase characteristic

has a positive slope. With the three-section filter assumed here the phase

shift at the cut-off is 3tt radians. This corresponds to an average dB/dw

over the band of about 5 X 10
-4

, or with the given value of <a/Q, to an

average attenuation of about 0.25 neper. At low frequencies, where dB/dw

is only about half this average, the attenuation is correspondingly reduced,

but it is much greater near the cut-off, where the phase slope is high.

* A low Q is assumed here in order to make the effects of parasitic dissipation appre-

ciable in an overall plot like Fig. 10.22. Even so, however, no attempt has been

made to draw the curves exactly to scale.
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Beyond the cut-off the phase slope is generally zero and dissipation has
relatively little effect on the attenuation. Dissipation does, however,
reduce the peaks of attenuation from infinite to finite values, which may be
regarded as corresponding qualitatively to the associated breaks in the
phase characteristic.

10.12. Parasitic Dissipation in Distortionless Media
Equations (10-22) and (10-23) give particularly interesting results when

they are applied to a network whose dissipationless characteristics approxi-
mate those of an ideal medium. In general, it appears that the characteris-
tics of such a structure will not be seriously impaired by dissipation, or, in
other words, a network whose characteristics approach the ideal is roughly
self-compensatingfor the effects of uniform dissipation. For example, if the
impedance of a network approximates the ideal constant resistance charac-
teristic, the derivatives of its resistance and reactance with frequency will
ordinarily be quite small.* The changes produced by dissipation in resist-
ance and reactance, as found from (10-22) and (10-23), must of course be
correspondingly small. As judged from these formulae, therefore, the
impedance should be about the same whether it is computed on a dissipative
or a non-dissipative basis.

If the network is to have an ideal transmission characteristic as well as an
ideal impedance, its attenuation must be constant and its phase shift must
vary linearly with frequency.! By the previous argument, the constancy
of the attenuation shows that the phase characteristic will be disturbed
only slightly by dissipation. We cannot use the same logic to show that
the attenuation is unchanged by dissipation since linearity of phase shift

means a constant, but not in general a zero, value of dB/da>. We can,
however, at least see from (10-22) that over narrow frequency ranges the
percentage distortion in a circuit with constant delay can be no greater
than the percentage band width unless Q actually decreases with fre-

quency. Over broader ranges the loss introduced by dissipation will

depend upon the variation of the factor ca/Q. Since Q is directly propor-
tional to frequency when the resistances of the coils and leakages of the
condensers are constant, the structure will also be distortionless over broad
ranges in this limiting case.

These relations are most easily exemplified in transmission line theory.
It is well known, for example, that an ideal non-dissipative transmission
line is distortionless and that it remains distortionless if dissipation is

added in accordance with the relation R/L = G/C, or, in other words,

* Impedance characteristics which fluctuate rapidly, without ever departing far
from the ideal value, must, of course, be excepted in this argument,

t J. R. Carson, " Electric Circuit Theory and the Operational Calculus," p. 183.



THE DESIGN OF IMPEDANCE FUNCTIONS 223

uniformly. Actual lines, which do not satisfy this relation, exhibit marked

distortion at low frequencies. They tend to approximate distortionless

lines, however, as soon as the frequency is high enough to give reasonably

large Q's for the distributed series impedance and shunt admittance, even

though the distortion remains non-uniform.* For practical application,

the relations are probably most useful for complicated aggregations of

filters, equalizers, and phase correctors having an overall characteristic

which is substantially distortionless. Evidently the effects of parasitic

dissipation in the individual units should tend to be compensatory so that

labor will be saved by postponing consideration of this problem until pre-

liminary designs of the complete system are available.

10.13. Variations in a Network Characteristic Produced by Changes in a

Single Element

In many network design problems it is convenient to study the effects

of the most important elements on the network characteristic individually

by assigning them various values while the remaining elements are held

fixed. In such circumstances the study may be considerably facilitated by

the use of certain elementary propositions from function theory. Broadly

speaking, the applications of function theory are similar to those we have

seen before, except that the independent variable is taken as a complex

branch impedance rather than as a complex frequency.

The simplest proposition we can use depends merely upon the general

form of the functional relationship between the network characteristics of

greatest interest and any individual branch impedance. For example, if

Z is either a driving point or a transfer impedance, it follows from (1-11)

and (1-12) of Chapter I that it must be related to any given branch imped-

ance, z, by an equation of the type

where A, B, C, and D are quantities which depend upon the other elements

of the circuit. They will, of course, normally vary with frequency. If we

keep the frequency fixed, however, so that A, B, C, and D are merely con-

stants, equation (10-24) represents a so-called " bilinear transformation
"

of the variable z. It is a property of such a transformation that if z assumes

values lying on a circle (including as a special case a straight line) the corre-

sponding values of Z will also lie on a circle. If z is a resistance, we can

* This assumes, of course, that R and G do not vary with frequency. In physical

lines R and G usually increase with frequency, so that the attenuation also increases

instead of flattening out. This corresponds to the variation in the factor <a/Q dis-

cussed previously.
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regard the " circle " on which it lies as the real axis, including both posi-
tive and negative portions, while if z is a reactance, the " circle "

will
similarly be the complete imaginary axis.

The circle described by Z, corresponding to either of these cases, is deter-
mined as soon as we know three points on it. In most circumstances
two of these points can be found readily by assigning z the special values
zero and infinity. The third can be found by choosing any convenient
intermediate value, or the circle can frequently be located directly by con-
ditions of symmetry. For example, if we are dealing with a variable resist-
ance in a network all of whose remaining elements are reactances, the por-
tions of the Z circle corresponding to positive and negative resistances
must evidently be located symmetrically about the axis of pure imaginaries.
An example is furnished by the network and associated impedance plot
shown in Fig. 10.23. The solid and broken line portions of the plot corre-

+iX

-ZiX
+2X

-2iX

Fig. 10.23

spond respectively to positive and negative values of the variable resistance
in the network. The structure is a so-called " constant impedance " device
since it has the property that the absolute value of its impedance is inde-
pendent of the variable resistance. This can be verified by direct com-
putation, but we may notice that it must follow from the symmetry of the
plot about the imaginary axis if the network is so chosen that the reactances
corresponding to zero and infinite values of the variable resistance are
equidistant from the origin.

A second example, this time showing symmetry about the real axis, is

shown in Fig. 10.24. The broken line represents the locus of Z when the
condenser is replaced by an inductance.

Some assistance in making studies of this sort can frequently be obtained
merely from the broad fact that, except possibly for isolated points, any
ordinary network characteristic must be an analytic function of any one of
the branch impedances. If we vary this impedance, therefore, the network
characteristic must vary " conformally." This means that if we know the
effect on the characteristic produced by a slight variation of the branch
impedance in any given direction, we can find the effect produced by a slight

variation in the branch impedance in any other direction by rotating the
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original change in the characteristic through the same phase angle as that

by which the variation in the branch impedance is rotated. For example,
the effects on a network impedance produced by a slight change in the

resistance of one branch and by a slight change in its reactance are at right

R,

plane

R1R2

RrfR3

Fig. 10.24

angles to one another. Thus in Fig. 10.23 if we vary the inductance while
we hold the resistance fixed at any assigned value, the new circle must cut
the original circle of Fig. 10.23 orthogonally. This is illustrated by
Fig. 10.25 for a resistance equal to X, which corresponds to the point P in

Fig. 10.23. The original circle of Fig. 10.23 is reproduced by the broken
lines.

We can also study the effect of a single branch impedance on the complete
network by means of the theorem on the maxima and minima of analytic
functions described in Chapter VIII. For example, if we assign z to

z plane

-Hx

10.2s

larger and larger circles in the right half-plane the corresponding circles for
Z also grow larger, so that variations in Z produced by changes in z become
more extreme. The largest possible " circle " for z, in a passive network, is

the axis of pure reactances and the maximum and minimum for either com-
ponent ofZ must consequently be found when z is a pure imaginary. This
has already been discussed in Chapter VIII.



CHAPTER XI

Physical Representation of Transfer Impedance Functions

11.1. Introduction

Viewed broadly, the analysis of the last several chapters has consisted

of an attempt to construct a general network theory upon the postulate

that a realizable network must be stable. Chapters VII and VIII gave the

essential framework of such a theory and the formal requirements to which

it leads for the various network functions. Chapters IX and X were an

effort to clothe the driving point immittance requirements with physical

meaning by deducing from them a number of particular consequences for

more or less specialized circuits. The present chapter and the one which

follows attempt to do the same thing for transfer immittance functions. In

particular, the present chapter can be looked upon as the analogue, for

transfer immittances, of the discussion of driving point immittances in

Chapter IX. It consists essentially in an attempt to show that the require-

ments for transfer functions laid down in Chapter VII are sufficient as well

as necessary by a demonstration that any function meeting these conditions

can be realized in a physical circuit of a certain type.

There is a very close parallel between the theory of driving point immit-

tances and the theory of transfer immittances. The logical analogue of a

driving point immittance, however, is not a transfer immittance itself but

its logarithm. Thus we may look upon attenuation and phase in the trans-

fer analysis as taking the place of resistance, or conductance, and reactance,

or susceptance, in the driving point analysis. The present discussion

attempts to stress this analogy as much as possible. Thus the initial

operations of resistance, or conductance, reduction and reactance, or sus-

ceptance, reduction in Chapter IX are replaced here by the corresponding

operations of attenuation reduction and phase reduction. As in the dis-

cussion of driving point functions, attention is first restricted to passive

networks. In the driving point analysis the solution for passive circuits

was extended to the general case by the addition of a negative resistance

which made it possible to disregard the limitation that the resistance or con-

ductance component of a passive driving point immittance cannot be

negative. Similarly, the solution for passive transfer functions can be

extended to the general case by the addition of an ideal amplifier, which

allows us to realize negative attenuations. In the next chapter the analogy

is carried further by the representation of the general transfer function by a

226
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number of simple structures in tandem. This corresponds to the represen-

tation of the general driving point function by a number of simple imped-
ances in series or parallel.

The analogy just described breaks down in only one important respect.

The general discussion thus far has been carried forward in dual terms to

take account of the fact that the analysis may employ either mesh or nodal
methods. In the consideration of driving point functions this mathe-
matical dualism is of some physical consequence since it leads naturally to

alternative series and parallel representations for a given function. It

leads also to such complexities as occurred in Chapter IX when we
attempted to determine the short-circuit stability of impedances in series

or the open-circuit stability of impedances in parallel. In the analysis of
transfer functions, on the other hand, the mathematical dualism has no
particular physical significance. There is no inverse to a tandem combina-
tion of networks, in the sense that a series combination of networks is the
inverse of a parallel combination. To simplify the language, therefore, the
discussion will treat only of transfer impedances.

11.2. Statement of the Problem

In previous chapters transfer impedances and admittances have been
used rather generally as measures of the response which would be obtained
at one point of the network if a current or voltage source were introduced
at some other point. So far as this formulation of the problem goes, the
two points may be any two branches or nodes chosen at random. The
self-impedances or admittances at the two points need not be sharply dis-

tinguishable from the rest of the network. In practical situations, how-
ever, the two points are usually the actual source of the signals in which we
are ultimately interested and the actual receiv-

ing device, and the problem is that of inter-

polating some network which will control the

transmission between them in some desired

way. Since the source and receiver are usu-

ally given while the network is still to be found,

this makes it desirable to distinguish between

the network proper and its terminations, as

indicated by Fig. 11.1. The network proper

is represented by the box and the terminations

by the two resistances R\ and R%.*

* For descriptive purposes the terminations may as well be general impedances,

since any reactances they include can be regarded as part of the network. They are

assumed to be resistances here, however, to avoid any restrictions on the network
when we come to the problem of simulating any possible transfer impedance.

Fig. 11.1
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The formulation of the situation given by Fig. 11.1 raises a number of

questions which have not previously appeared. In two-terminal networks,

for example, the specification of the driving point impedance of the struc-

ture fixes it completely so far as its participation in the overall operation of

the complete circuit in which it appears is concerned. The choice of the

transfer impedance of a four-terminal network, on the other hand, specifies

the network only partially. In Fig. 11.1, for example, it fixes only the I2

which will flow in response to the generator E\. We may also be interested

in the input current /i which would be caused by the same generator or

either the I\ or the I2 which would flow if a second generator E2 were

added in the output circuit. Evidently, before taking further steps it is

necessary to know how many parameters are required to fix the network

completely and what disposition of the additional parameters will be made

in the present situation.

This problem is most easily investigated by means of the mesh equation

solution for I\ and I2 in terms of Ei and E2 . If we suppose that the input

and output circuits are chosen respectively as the first and second meshes,

the result from (1-7) and (1-9) of Chapter I is easily seen to be

ElT + E2
A '

(11-D

where A is the determinant of the complete network, including the termina-

tions Ri and R2 . We can, however, also write the equations in a form which

segregates the properties of the network itself from its terminations. Using

the expansion methods indicated by such equations as (1-1 1) or (1-12) of

Chapter I, this results in

\Rl + ^-]l1
-^I2 = E1 ,

L A1122J U122
(H-2)

L A1122J
— h + I #2 + T^- I

J2 = £2,

where An and A22 represent An and A22 when Rt = R2 = 0. The super-

scripts are immaterial for the other determinants.

Equations (11-2) show that if the operation of the network is to be

specified completely for any choice of the E's and the R's it is necessary,

in general, to know the four quantities A22/Au22 , A2i/An22> A12/A1122J and

An/A1122- In passive networks, to which the discussion is restricted at the
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Fig. 11.2

moment, one of these can be eliminated by the principle of reciprocity,

which allows us to write A12 = A2i. The remaining three quantities can,

of course, be replaced by other sets of three functionally related to them.
For example, if we interpret equations (11-2) as the mesh equations of the
structure shown in Fig. 11.2, the network is specified in effect by the three

branches of an equivalent

T. This is a familiar de-

vice. We may also analyze

the network in terms of its

image parameters or its iter-

ative parameters. In any
event, however, the com-
plete specification of the

network requires at least

three parameters and we
must know all of them in order to determine its operation for all possible

terminal conditions.

An elaborate and somewhat unwieldy solution of the general problem of
designing the network when the three parameters are chosen arbitrarily,

within physical limits, has been advanced by Gewertz.* For the purposes
of the present discussion, however, it is sufficient to demonstrate that a
specified transfer impedance A/A12 , from input to output, can be obtained
when the terminations have their prescribed values. This leaves two
parameters which can be chosen arbitrarily and by choosing them in differ-

ent ways a rich variety of solutions can be obtained. All the solutions, of
course, will be alike, so far as the specified transmission characteristic is

concerned, but they may differ widely in such properties as the impedance
which the network presents to the source or the load. One possibility is

furnished by a method due to Darlington.f Here the two arbitrary param-
eters are specified, by implication, by the assumption that the network is

to contain only reactive elements. This solution is particularly applicable
to filter problems.

The solution developed here will be based upon the assumption that
the network is to have a constant resistance image impedance at each end.
This choice is a particularly convenient one for theoretical purposes, since
it allows us to ignore reflection effects in evaluating the transmission charac-
teristic. This will be especially useful later when we come to the problem
ofrepresenting a complete characteristic by a number of simple structures in

* " Synthesis of a Finite, Four-Terminal Network," Journal of Mathematics and
Physics, Vol. 12, 1932-33, pp. 1-257.

', t" Synthesis of Reactance 4-PoIes," Journal of Mathematics and Physics, Sept
1939, pp. 257-353.
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tandem. It has the additional advantage, for the purposes of this book,

that it converts the analysis, in effect, into a theory of equalizers. The

material thus becomes directly pertinent to problems of pre-equalization

or P circuit equalization in amplifier design, as well as being more remotely
t

pertinent to the design of such structures as interstage networks, which are

broadly like equalizers.

11.3. Construction of a General Transfer Impedance

The transfer impedance A/A12 between R x and R2 in Fig. 11.1 will be

symbolized by ZT - Since Zt represents a transmission it is also convenient

to measure it in logarithmic units. The most efficient possible transmission

between R x and R2 with passive networks would be obtained if the two were

matched by an ideal transformer, and corresponds to Zt = 2v RtR2 . If

this value of ZT is used as a reference, the logarithmic measure of ZT is

given by = log (ZT/iVR^) , where 6 = A + iB may be called the

transfer loss and phase. Since ZT is evidently a rational function of p
these relations can also be written as

ZT =— = 2VRjT2 e
e = 2\^R2 e

A+iB

A12

-2VR1R2 k
{p
_ h){p _ h) ^

[p
_ K)

(11-3)

The a's and Fs in (11-3) are, of course, the zeros and poles of ZT , or the

points of infinite gain and infinite loss in terms of 9. The conditions which

they must meet if ZT is to represent a physical circuit are given by the

general list in Chapter VII. The requirements are, broadly speaking, that

both zeros and poles must either be real or occur in conjugate complex pairs,

and that the zeros must be found only in the interior of the left half-plane.

The poles, however, may occur in any part of the plane.* As long as the

discussion is restricted to passive circuits it is necessary, in addition, to

satisfy requirement 6b, which states, in effect, that the network cannot

serve as a source of power. In the present instance, this means that the

constant k must be large enough to make the absolute magnitude of the

last expression in (11-3) at least equal to 2\/R 1R2 at all points on the real

frequency axis. In other words, the transfer loss A cannot be negative.

* It will be observed that the " minimum phase " condition, Sc in the list of Chap-

ter VII, is not involved here. Minimum phase networks are discussed later. It is also

assumed, in accordance with the discussion of Chapter VII, that none of the zeros

lies exactly on the real frequency axis.
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In comparing this formulation of the restrictions on passive transfer

impedances with those developed for passive driving point impedances, we
notice two important differences. The first is the fact that the previous

requirement that the real component of the impedance cannot be negative

along the real frequency axis has been eliminated. It is replaced by the

requirement that the real component of 6 cannot be negative at real fre-

quencies. The second is the fact that the poles of the function are no
longer confined to the left half-plane. As later discussion will show, these

are the changes which are necessary if the real and imaginary components
of 9 are to be taken as the analogues

of the real and imaginary compo-
nents of a driving point impedance

function.

The structure which will be used

to represent this general passive

transfer function is the combination

of a symmetrica] lattice network*

and ideal transformer shown by Fig.

11.3. In terms of its branch im-

pedances, Zx and Zy, the image impedance and image transfer constant of

the lattice can be written in general as

11.3

and
ZiJ V /jX/jy

tanh-

(11-4)

(11-5)

As suggested in the previous discussion, the image impedance of the lattice

will be assumed to be a constant resistance. It can be set equal to the

terminating impedance R2 by choosing Zx and Zy as inverse networks of

impedance product ZxZy = R% in (1 1—4). With this choice the input

impedance of the lattice is, of course, also R2. The transformer in Fig. 1 1 .3

is introduced to provide a final impedance match between this resistance

* For the benefit of readers unfamiliar with the lattice configuration it may per-

haps be helpful to point out that if the structure is unfolded it takes the form of a
Wheatstone bridge in which opposite arms are equal. The lattice is much used in net-

work analysis both because of the simplicity of its design equations and because it is

capable of representing any characteristics obtainable from any other symmetrical

structure. Further details of its properties will be given in the next chapter. For a
more complete discussion, especially of the use of the lattice in filter design,the reader

may also refer to Guillemin, " Communication Networks," Vol. II, Ch. X. The
introduction of the lattice structure into network theory appears to be due originally

to Campbell, " Physical Theory of the Electric Wave Filter," B.S.T.J. y Nov., 1922.
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and the generator resistance R\. It can be omitted if the loss due to the

mismatch between the two resistances is not of importance.

With these assumed impedance relations it is clear that the 8 of equa-

tion (11-5) representing the transfer constant of the lattice can be identified

with the 6 representing the so-called " transfer loss and phase " in equa-

tion (11-3). Since Zy can be expressed in terms of Zx and R2 from the

image impedance condition, however, (11-5) is readily rewritten in either

of the forms

Zxl+~
«• = f (H-6)

1

R2

or

^ = 52^' (H-7)

The problem thus reduces to that of choosing a Zx from equation (11-7)

.which will give the prescribed transmission characteristic. Since e
e

is a

rational function of frequency, it is clear that Zx will be a rational function

also. To complete the analysis we must show that this rational function

can be represented as a physical two-terminal impedance when e
6 meets the

conditions we have established for transfer impedances.

The proof that Zx can be constructed depends upon an application of the

preceding theorem on the maxima and minima of analytic functions.

Although e
e may have poles in the right half of the p plane its reciprocal, at

least, will be an analytic function in this region. The absolute value of the

reciprocal function is therefore greater at some point on the real frequency

axis than it is anywhere in the interior of the right half-plane. This is the

same as saying that the minimum value of the transfer loss A in the whole

right half of the p plane is found on the real frequency axis. We have

already seen, however, that if the network is passive the minimum A on

the real frequency axis cannot be less than zero. Within the right half of

the plane, therefore, A > 0. It follows from equation (11-7) that Zx

can have neither zeros nor poles in this range. Moreover, if we write

e
e = e* cos B + ie

A
sin B the real component ofZx is readily found to be

e
2A - 1

Rx = Rz
(e* cos B + if + (^smBf

(11_8)

Under the assumed conditions, this will evidently be positive on the real

frequency axis. Zx thus meets all the conditions of physical realizability
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and can be represented as a two-terminal Brune network or some equivalent

structure. Since the inverse impedance Z„ is obviously also physical, this

allows us to state the

Theorem: The transfer impedance of any passive network* can be

represented by a symmetrical constant resistance lattice

network with resistance terminations.

This conclusion is of engineering as well as of theoretical interest. It

indicates, for example, that any filter characteristic can be duplicated in a

constant resistance structure, thus avoiding the erratic impedances which
ordinarily characterize filters. The difficulties with the method lie in the

fact that the two-terminal impedance branches of the lattice may be

complicated and difficult to adjust, and that the constant resistance struc-

ture as a whole requires appreciably more elements than would a conven-
tional filter. The first of these difficulties can be avoided by the decom-
position method described in the next chapter, at the cost'of a considerable

increase in the fixed attenuation of the network. As the method stands

thus far, of course, the constant attenuation characteristic can be made as

small as any passive network can give if we include the ideal transformer
matching the resistances Ri and R2 .

11.4. Examples of the Representation of Transfer Functions by Lattices

As an elementary example of these processes we may consider the circuit

shown by Fig. 11.4. The transfer impedance from one resistance to the

other is given by ZT = 2 + p. Since 2V
/
/? 1 i?2 = 2

in this circuit, the corresponding transfer loss

and phase is given by e
e ~ 1 + p/2. Substituting

in (11-7) gives the result

z* —T~a
=

i a i

"V (H-9)
p + 4 p/4 + 1

which represents the impedance of a unit resist-

ance in parallel with an inductance of one quarter unit. The complete
lattice is shown by Fig. 11.5.f

* It is assumed that none of the zeros ofA lies exactly on the real frequency axis.

Otherwise, however, the phraseology is somewhat too restrictive since, as later dis-

cussion shows, an active transfer impedance can also be represented by a passive

lattice if the lattice terminations are allowed to be different from those in the original

circuit.

t The broken lines in this and subsequent lattice diagrams indicate series and
cross-arm impedances identical with those shown explicitly.
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The example is made slightly more complicated by including a parallel

capacity in the original circuit, as shown by Fig. 1 1.6. The transfer imped-

ance is readily found as

ZT = p
2 + 2p + 2 (11-10)

and is again just twice e
e

. The corresponding Zx therefore appears as

p* + 2p

Fig. 11.5 Fig. 11.6

It will be noticed that Zx has a zero at the origin. We can conveniently

begin the process of representing the impedance with a susceptance reduc-

tion at this point. With this beginning the complete network is easily

"ietermined. In admittance form, it appears as

Yx
p
+ l+p/2

(11-12)

which represents an inductance in parallel with a series combination of a

capacity and a resistance. The lattice is shown by Fig. 11.7.

/>/2

j—UUL/-I

Fig. 11.7 Fig. 11.8

The structure of Fig. 11.6 can evidently be regarded as an elementary

filter. If we begin with more complicated filters the general procedure can

still be carried out, but the degree of the impedance expression is higher and

the numerical work becomes much more onerous. It is convenient, how-

ever, to include one example of a more complicated filter in order to pave

the way for the description of the alternative procedure given in the next

chapter. The structure is shown by Fig. 11.8. It is a conventional one
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and one-half section low-pass filter with a cut-off at <a — 1 and with the loss

characteristic shown by Fig. 11.9.* The transfer impedance expression, as

Attenuation in db
so

40

30
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Y
i\

/

J

i

U)
0.5 2.0 2.5 3.01.0 1.5

Fig. 11.9

determined by the ordinary mesh computation methods used for filters, is

given by

1.654/ + 4.264/ + 6.576/ + 6.84/ + 4.4j> + 2

0.23/ + / + 1

The corresponding Zx is obtained as

1.1/1 + l.lp + 1.495/ + 0.864/ + 0.376/)

ZT = 2/ = (11-13)

Zx = (11-14)
1 + l.lp + 2.21/ + 1.644/ + 1.181/ + 0.413/

Following Brune's methods this can be developed in the form shown by
Fig. 11.10.

0.0157 ..
0.575 -1.728/ 2.881^

Fig. 11.10

* The filter consists of a full section with m = 0.8 and a half section with m = 0.6.

The transfer impedance and loss characteristics shown later correspond to the exact

element values for a structure of this type, rather than to the approximate values

given by Fig. 11.8.
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1 1 .5. Loss and Phase Reduction of the Transfer Impedance

In discussing two-terminal networks, it was pointed out that the resist-

ance and reactance characteristics could ordinarily be reduced to certain

minimum values independently of one another. For example, we could

always subtract resistance from a network until the resistance characteristic

became zero at some point on the real frequency axis. Correspondingly,

we could always subtract pure reactance elements until all the poles at

real frequencies were eliminated. Similar transformations are possible in

four-terminal networks if we consider attenuation and phase shift instead

of resistance and reactance.

The possibilities of attenuation reduction follow immediately from the

discussion of the previous section. Evidently, the proof given there

remains valid if the transfer loss is changed by any constant, provided only

that it does not become negative at any point on the real frequency axis.

This can be expressed by the

Theorem: A passive transfer loss and phase will continue to meet the

conditions of physical realizability in passive networks if the

transfer loss is diminished by any real constant as long as it

does not become negative at any real frequency.

A transfer function will be called a minimum loss or minimum attenuation

expression if the minimum transfer loss on the real frequency axis is zero,

so that no further diminution is possible without violating the passive

conditions.

The phase shift reduction of the network requires a more elaborate dis-

cussion. In this reduction the analogue of a pole on the real frequency

axis in a driving point impedance is a pole anywhere in the right half of the

p plane in the expression for Zt, while the analogue of a two-terminal

network of pure reactances is an all-pass phase correcting structure.

In order to show the correspondence in detail, let us suppose that one of

the poles, bj, of ZT in (11-3) is found on the positive real p axis. ZT will

evidently be unchanged if we replace the corresponding factor, p — bj,

by p + bj, and at the same time multiply the complete expression by

(p + bj)l {p — bj). This leads to

Zr = Z'T
^h (11-15)
p - bj

where Z'T represents ZT after p — bj is replaced by p + bj. But since p is

imaginary on the real frequency axis while bj is a real constant, the absolute

value of (p + bj)/(p — bj) at real frequencies must be unity. Thus the

minimum transfer loss of Z'T is the same as that of Zt, and it is obvious

that Z'T meets all the requirements of physical realizability if Zt is
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physically realizable. Moreover, it is apparent from (11-6) that the

quantity (p + bj)/(p — bj) can be identified with an all-pass phase

correcting section of the type shown by Fig. 11.11, in which Zx = R2 (bjlp).

Since the multiplication of Zy and (p + bj)/(p — bj) is equivalent to the

addition of the corresponding loss and phase characteristics, Z? can thus be

constructed by combining the network shown in Fig. 11.11 in tandem with a

network representing Z'T . This is illustrated by Fig. 11.12.

Fig. 11.11 Fig. 11.12

The elimination of a pair of conjugate complex poles in the right-hand

half-plane can be performed in the same manner. If we represent the poles

as bjx ± ibj2 the equation corresponding to (11-15) is

(p + bji + tbj2 )(p + bn - ibi2 )

(P - bjX — ib&) (p — bji + ibi2 )

Ihixp

Zjt — Zj*t

i +
— Jut

P
2 + (& + b%)

1 -
2bnp

(11-16)

p- + ipu + m
Evidently, the expression 2bjxp/[p

2 + (bfx + bf2 )] in this equation repre-

sents an anti-resonant circuit and can be identified with ZXIR2 in (11-6).

The corresponding phase shifting network is

therefore of the type shown by Fig. 11.13.* By
continuing step-by-step in this way all the

poles in the right-hand half of the plane can

be replaced by their negatives in the left half

of the plane. We will eventually secure a

number of structures of the types illustrated

by Figs. 11.11 and 11.13 in tandem with a network whose transfer imped-

* In Fig. 11.13 the anti-resonant branch appears in the diagonal rather than the

series branch. It is apparent from an inspection of either the lattice structure itself

or equations (11^) and (11-5) that interchanging the series and diagonal branches

of the lattice merely reverses the sign of the output current, without otherwise

affecting the situation. In view of this simple relation no systematic attempt to

distinguish between series and diagonal branches is made in future discussion.

Fig. 11.13
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ance has zeros and poles only in the left half of the plane. In accordance

with the definition enunciated in Chapter VII, the residual network will

be called a minimum phase shift structure.

This discussion has emphasized the substitution of poles in the left

half-plane for poles in the right half-plane because the minimum phase con-

dition will play an especially important role in our future analysis. It is,

however, equally possible to transfer poles in the other direction. Each

time a real pole or a pair of conjugate complex poles is moved from the left

half-plane to the right half-plane the phase shift is, of course, increased by

an amount corresponding to one all-pass section. This is of some practical

importance because the complexity of the network will depend in general

upon the number of the poles and not upon the sides of the plane in which

they appear.* By permitting any of the poles to lie on either side of the

plane, therefore, we can secure some control of the phase characteristics of

equalizers having given loss characteristics without adding to the number of

elements in the structure. This general possibility can be formulated as the

Theorem: A passive transfer impedance will continue to meet the

requirements of physical realizability in a passive network

if any of its real poles or any pair of its conjugate complex

poles are replaced by their negatives. The change is equiv-

alent to increasing or decreasing the transfer function by

the phase shift of a corresponding all-pass section.

3;y4 A simple example of these transformations

is given by the function

e°=-2 P-±A- (11-17)
p - 2

Upon making use of (11-7) and assuming

that i?i = i?2 = lj for simplicity, the corre-

sponding network is found in the form

shown by Fig. 11.14^f. Its attenuation and

phase characteristics are shown by Fig.

11.15 and the solid line in Fig. 11.16, respec-

tively. To perform the phase reduction, the

function is written e.s

-[-*KB±€- (11-18)

* It is assumed here that the structure will be built as a lattice. With unbalanced

configurations the statement is still true in a purely theoretical sense, but changes in

the locations of the poles may affect the ease with which a circuit with positive ele-

ments can be found. This question is discussed in the next chapter.



TRANSFER IMPEDANCE FUNCTIONS 239

The two terms on the right-hand side correspond respectively to the equal-

izer and phase corrector in Fig. 11.145.* The attenuation characteristic,

which, of course, is furnished entirely by the equalizer, is still that given by
Fig. 11.15. The phase characteristics of the two components are shown

o) =— <J

Fig. 11.15 Fig. 11.16

respectively by the broken lines I and II in Fig. 11.16. In this circuit

there are only two possible phase characteristics which can be associated

with the additional loss characteristic without the use of extra elements.

In an equalizer whose transfer impedance contained more poles, however,

the number of options is evidently much greater,f

11.6. Properties of All-Pass Structures

In addition to the specific networks shown on Figs. 11.11 and 11.13, all-

pass networks can also be constructed in a variety of other forms. For
example, it is clear that a lattice will be an all-pass network provided its

Zx and Zv branches are inverse reactances of any complexity. Since a

purely reactive Zx will always be an odd function of frequency, it is easy to

see from equation (11-6) that any such structure will have the property,

which we previously established for the simple networks of Figs. 11.11 and
11.13, that the zeros andpoles of the transfer impedance will be negatives of one

another. This will be taken as a definition of what is meant by an all-pass

network. A typical arrangement is shown by Fig. 11.17. The zeros are

represented by circles and the poles by crosses, corresponding zeros and
poles being identified by corresponding letters P, Q, etc.

In a broad sense, the all-pass sections play the same role in four-terminal

* As the reader may have observed, replacing a pole by its negative, as in equa-
tion (11-15), reverses the sign of Z'T with respect to Zr at zero frequency. This
is compensated for by a similar reversal at zero frequency in the extracted all-pass

section. Since it is usually desirable to keep the phase shifts of all components
equal at zero frequency for comparative purposes, however, additional phase reversals

to zero have been introduced in both networks of Fig. 11.145 by interchanging

their Zx and Zy branches.

| For additional examples of optional phase characteristics in simple circuits see

O. J. Zobel, " Distortion Correction in Electrical Circuits," B.S.T.J., July, 1928.
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network theory as pure reactance networks play in two-terminal theory.

In their respective fields, both types of structures represent the essential

ways we have available for chang-

p plane p p ing the imaginary component of

a network characteristic without

affecting its real component. Al-

though all-pass sections of great

q complexity may exist, the fact

"
„ that their zeros and poles must

1
T occur in positive and negative

pairs makes it possible to treat

them very simply, since it is ob-

vious that the individual combin-

ations of zeros and poles can be

represented separately by ele-

mentary networks of the types

shown by Figs. 11.11 and 11.13. This can be stated as the

Theorem: Any all-pass network is equivalent to a number of first and

second degree all-pass networks in tandem.

An illustration showing the resolution of an all-pass network of the fifth

degree (i.e., having five zeros and five poles in its transfer impedance)

into simpler constituents is shown by Fig. 11.18.

Apt7" Aj?A?Arr
_/K

= A A A

Fig. 11.17

Fig. 11.18

From the point of view of the general analogy between all-pass networks

and two-terminal reactances this proposition may be said to correspond to

the theorem that a general two-terminal reactance can always be repre-

sented by a number of simple anti-resonant circuits in series, as illustrated,

for example, by Fig. 9.8 of Chapter IX. The two-element structure

of Fig. 11.13 may thus be said to correspond to an anti-resonant circuit,

while the single element structure of Fig. 11.11 is equivalent to a single coil

or condenser in series. Since the development in terms of all-pass networks

may lead to a number of simple networks in tandem, the analogy is not

quite exact. The formal analogy can be continued, however, if we combine

the simple structures in pairs to secure two-element networks, by means

of an equivalence described in the next chapter. In essentials, the parallel-

ism fails at only one point. In two-terminal network theory, the existence
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of inverse relationships allows us to choose between a development in terms

of a number of anti-resonant circuits in series and a development in terms

of a number of resonant circuits in parallel. In all-pass structures, on the

other hand, there appears to be no equivalent to this inverse relationship,

and pairs of reciprocal developments therefore do not exist.

The analogy between two-terminal reactances and all-pass structures can

be extended to include their energy relationships also. Corresponding to

equation (9-16) of Chapter IX, for example, it is possible to establish

the expression

^ = |-0r+J0, (n-19)

where B represents phase shift, R represents the image impedance of the

network, and the energy functions are evaluated on the assumption that a

current of unit maximum amplitude flows into the structure.

Since the energy functions are necessarily positive quantities, it follows

from the equation in Chapter IX that the reactance of a physical reactive

network is always an increasing function of frequency. Correspondingly,

we see from equation (11-19) that the phase characteristic of an all-pass

structure must always have a positive slope. Typical characteristics are

shown by Fig. 11.19.* Curve I corresponds to a

" single-element " section of the type shown by 2w
Fig. 11.11. With only one element in the series

branch of the lattice, sections of this type have only

one design parameter, and this is consumed in fixing

the unit of frequency. Thus the characteristics of

all sections of this type are of the same general pIG u 19

shape. They satisfy the equation B = 1 tan
-1

kf.\

In the two-element sections we can regard the unit of frequency as being

established by the resonances of the lattice branches. This leaves one

parameter which can be employed to control the shape of the curve.

The additional parameter can be taken as the relative stiffness of the

anti-resonant branch impedance, say, or as the phase angle of the com-

plex roots and poles of the transfer function, the relation between the two

* In Fig. 11.19 the phase characteristics are taken as zero at zero frequency as a

matter of convenience. With the usual conventions, the phase shift at zero in the

structures of Figs. 11.11 and 11.13 is actually ±ir. This difference, of course, is only

a phase reversal such as might be secured by interchanging either the input or output

terminals.

f For a more complete discussion of the design of all-pass structures, and of their

uses in communication systems, see S. P. Mead, " Phase Distortion and Phase Dis-

tortion Correction," B.S.T.J., April, 1928, or H. Nyquist, " Phase Compensating

Network," U. S. Patent No. 1,770,422, July 15, 1930.
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being easily understood from (11-16). If the anti-resonant circuit is

relatively stiff the roots and poles will be nearly real,* as typified by the

points Q in Fig. 11.17, and the phase characteristic will be nearly

equal to twice the phase characteristic of some single-element struc-

ture. This is illustrated by Curve II of Fig. 11.19. At the other extreme,

an anti-resonant circuit of low stiffness leads to zeros and poles which

are almost pure imaginary, such as the points P in Fig. 11.17. The zeros

and poles are substantially opposite the point on the real frequency axis at

which the anti-resonance occurs and the phase characteristic changes

rapidly as we move along the axis in this vicinity. This is illustrated by

Curve III of Fig. 11.19.

11.7. Minimum Phase Shift Networks

In four-terminal network theory a minimum phase shift network is

similar to a two-terminal impedance after all the poles on the real frequency

axis have been extracted. Once the minimum condition has been reached,

we can make no further change in the phase characteristic without at the

same time affecting the attenuation. Since both the zeros and the poles

of a minimum phase transfer impedance must be found in the left half of

the p plane, the analytical restrictions on such an impedance are the same

as they are for a two-terminal impedance, except that there is no necessity

that real frequency poles be simple or that the real component of the func-

tion be positive at all points on the real frequency axis.

Since minimum phase shift networks will be postulated frequently in

later discussion, it is important to know when a structure is actually of

minimum phase shift type. This is not always an easy question to answer.

Some assistance, however, can be obtained from two general rules. The

first can be expressed as the

Theorem: A transfer impedance which has poles of multiplicity n%

and n2 at zero and infinite frequency respectively is of mini-

mum phase shift type if and only if the net phase displace-

ment between zero and infinity is («i + n2) (x/2) radians.

In particular, if the attenuations at zero and infinity are both finite the net

phase change must be zero. In a non-minimum circuit the net change is,

of course, always positive. The theorem is easily established from a con-

sideration of the Nyquist diagram of the structure.

The second distinction is structural. It will be recalled that the poles

of the transfer impedance are frequencies at which the current delivered

* With a very stiff anti-resonant circuit all the zeros and poles are real. In this

case of course, the two-element structure can be represented by two single-element

structures and contributes nothing new.
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to the load is zero. In a ladder network, however, the current delivered to

the load impedance can become zero only because some shunt impedance

becomes zero or because some series impedance becomes infinite. Since

the zeros and poles of the branch impedances must be found in the left half

of the plane if the branch impedances are passive, this leads at once to the

Theorem: Any passive ladder network is a minimum phase shift

structure.

This, of course, includes the transmission through a series of unilateral

vacuum tubes with ladder-type interstages.

Circuits which are broadly not of the ladder type are those in which the

current can reach the load by alternative paths. This is shown symboli-

cally by Fig. 11.20. Specific examples, in addition to the lattice network,

are given by the bridged-T and the ladder with inductive coupling shown by

Fig. 11.20 Fig. 11.21

Fig. 11.21. In such structures the poles of the transfer impedance are not

necessarily coincident with zeros or poles of the branch impedances.

Zero received current can also be obtained because the currents delivered

to the load by various paths cancel out. The poles are consequently not

necessarily restricted to the left half-plane and the network may have a

non-minimum phase characteristic. Whether or not the given network

actually has such characteristics of course depends upon the particular

values of the elements it happens to contain. In default of any other

remedy it may be necessary to compute the poles directly.

The structures just discussed can be described broadly as bridge-type

circuits. The lattice itself is, of course, a true Wheatstone bridge while the

other structures at least depend upon a balance. The discussion can thus

be looked upon as a statement of the essential design distinction between a

bridge and a ladder or series-shunt circuit. Evidently, the distinction is

one between the available phase characteristics for any given loss charac-
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teristic. The possible loss characteristics by themselves are theoretically

the same for the two types of structures.*

In practical engineering, this last conclusion should be qualified in one
respect. As we saw in the preceding chapter, the introduction of parasitic

dissipation is equivalent to a displacement of all the critical frequencies of

the network, including its frequencies of infinite attenuation, slightly to the

left in the p plane. If a network is originally of the minimum phase shift

type, therefore, it cannot produce infinite attenuation at real frequencies!

when parasitic dissipation is taken into account. A non-minimum phase

shift network, on the other hand, can be assigned frequencies of infinite

attenuation which will fall on the real frequency axis after the dissipation

shift is made. A simple example is furnished by the phase correcting sec-

tion of Fig. 1 1.13. At the resonance frequency both branches of this struc-

ture become resistances when dissipation is taken into account. With
proper proportioning the two resistances can be made equal, so that the

structure will give infinite attenuation at this frequency. In this particu-

lar circuit, of course, the proper relation will normally lead to extreme values

of the elements. In other structures, however, the same result can be

secured with more reasonable element sizes. This use of non-minimum
phase shift networks is of importance chiefly in filter problems and similar

situations, where extremely sharp selectivity may be required.

11.8. Representation of Active Transfer Impedances

In dealing with driving point impedance and admittance functions it

appeared that the essential distinction between active and passive functions

could be represented by the addition of a negative resistance in series or

parallel with the rest of the network. The negative resistance takes

account of the fact that the real component of a passive driving point func-

tion must be positive at real frequencies and allows all the rest of the struc-

ture to be built as a passive circuit.

Active transfer impedances can be treated in a similar way. Evidently,

they are exactly the same as passive transfer impedances except that it is

not necessary to assume, as was done in connection with (11-3), that the

absolute magnitude of the function is so chosen that the transfer loss is

positive at all real frequencies. This limitation can be overcome by

adding a negative loss, or, in other words, an ideal flat gain amplifier, to the

passive circuit. In the driving point discussion, however, it was necessary

to consider alternative series and parallel combinations of a negative resist-

* This can be shown rigorously by the methods used in the next chapter if the

absolute level of loss is not regarded as important.

| Aside possibly from zero and infinity, depending largely upon the way in which

dissipation is supposed to take place.
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Fig. 11.22

ance and a passive circuit, as indicated by Figs. 9.23 and 9.24 of Chapter IX,

to take account of the distinction between an impedance and an admittance

specification of the complete structure. In

discussing transfer functions the passive and

active constituents can be placed directly in

tandem with either analysis, as shown by Fig.

11.22. This result can be summarized as the

Theorem: A general transfer immittance function can always be repre-

sented by a passive circuit and an ideal flat amplifier in

tandem.

This theorem is of service chiefly in resolving apparent paradoxes in

active circuit theory. Since all this analysis depends fundamentally upon

the postulate that the network is stable, we can at once suspect that any

particularly wonderful or unusual transmission characteristic, departing

radically from the characteristics of ordinary experience, was computed

from an unstable circuit. We may take as an example the problem of con-

structing a negative all-pass network or a negative length of line.* Since

the gain of a feedback amplifier is the same as the loss of its fi circuit in the

region of high feedback, we should be able to simulate such a characteristic

over a reasonable frequency range

by building an amplifier with a

corresponding positive structure in

its feedback circuit. We might

also attempt to obtain such a char-

acteristic through the use of one or

more negative elements. Figure

11.23, for example, shows the equivalent of a negative all-pass circuit

secured with the help of a negative resistance.

There is nothing actually impossible about the problem of simulating

either a negative all-pass section or a negative length of line over a modest
frequency range. Either characteristic can, in fact, be approximated by
ordinary equalizers. If we use equalizers, however, we know that this

apparent reversal of normal behavior at low frequencies is obtained only at

the cost of a tremendous change in the nature of the characteristic beyond
the range of approximation. The change is in the direction of a decreasing

loss at high frequencies and is usually sufficient to nullify whatever result

we might hope to secure from such a device. If we simulate a negative line,

for example, the envelope delay at low frequencies will be negative, but the

* That is, a structure whose attenuation and phase characteristics at every fre-

quency are exactly the negatives of those of an ordinary all-pass network or trans-

mission line.

Fig. 11.23
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response to the high frequency components of any suddenly impressed

signal will be so greatly enhanced that the low frequency delay is not a true

measure of the actual delay of the signal. Whatever the signal may be, the

circuit will not actually exhibit a transient at negative time. To take a

perhaps less obvious situation, we may suppose that either the line or the

all-pass structure is to be used to cancel the phase shift of a low-pass filter.

If the phase shift is actually cancelled the change in loss at high frequencies

is so great that the original discriminating properties of the filters are also

cancelled.

The point of the theorem is that limitations exactly similar to these must
hold in an active circuit, provided the circuit is stable. In the feedback

amplifier representing a negative line or a negative all-pass network, for

example, any choice of >u and /3 which will provide the representation and
also give a stable circuit must lead to an actual gain /i/(l — /j(3) which
rises beyond the useful band in the same violent and uncontrollable way as

does the equalizer characteristic. A circuit like that of Fig. 11.23, which
has a constant gain characteristic, is unstable, as we can easily see by
inspection of the resonance around the first interstage loop.

As an example of another aspect of the theorem, we may consider the

provision of a very narrow band-pass characteristic by the use of a very

narrow band-elimination structure in the j3 circuit of a feedback amplifier.

In practice, a very narrow band-pass characteristic is not obtainable with

purely passive elements, whereas the inverse characteristic can be secured

fairly easily by the use of some type of bridge circuit varying rapidly

through a balance point. The theorem, however, states flatly that the

final amplifier transmission characteristics can be duplicated, except for a

constant loss, by a passive circuit. The point here is that the theorem is

stated for idealized passive elements. It takes no account of limitations

due to element sizes or, what is more important for this problem, limitations

due to parasitic dissipation in the elements. The advantage of the feed-

back design, in a broad sense, is that it provides an easy and convenient

way of supplying energy to neutralize element dissipation.

11.9. Constituents of General Driving Point and Transfer Functions

Most of the work of the remaining chapters is based upon a discussion of

the relations which must necessarily exist between the real and imaginary

components of driving point and transfer functions if the functions are to

represent physical networks. This discussion is complicated by the fact

that no altogether exact and universal relation between the two compon-
ents can exist. For example, if we begin with a given resistance charac-

teristic we can always secure a variety of corresponding reactance charac-

teristics by adding pure reactance networks to the circuit. Chapter IX
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and the present chapter have been devoted chiefly to an examination of the

ways in which the real and imaginary components of driving point and

transfer functions can be varied independently, in an effort to clear up

ambiguities of this sort before proceeding with the general problem. The

results of both chapters are summarized in Fig. 1 1 .24.
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The top of the figure shows a minimum resistance and minimum react-

ance structure in the driving point column and a minimum loss and mini-

mum phase structure in the transfer column. The particular circuits

shown utilize the simplest form of Brune's network. More complicated

functions can be represented by extending the network. In virtue of the

discussion of Chapter X, however, we can also represent more complicated

driving point functions, to within an additive resistance, by summing up a

number of the elementary structures. It is shown in the next chapter that

a corresponding result holds for transfer functions. The networks thus

represent, in some sense, the principal ways in which physical driving point

and transfer impedances can behave. In these networks, moreover, the real

and imaginary components of the driving point or transfer function are

uniquely related. Granted either component, the other can be found

exactly.

The remaining portions of the figure show the possible ways of changing

one component of the driving point or transfer function of the basic net-

work without affecting the other. Thus we can change the imaginary

component by the addition of anti-resonant networks or all-pass sections, as
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indicated by the second line of the figure. The real component can be

changed by the addition of a positive resistance or a positive loss, as indi-

cated by the third line. Finally, if we include active elements as well as

passive elements the real component of the original functions can be

changed by the addition of a negative resistance or a negative loss. If the

diagram is allowed to symbolize parallel as well as series combinations

of driving point units, the list gives a complete statement of all possible*

driving point and transfer functions.

* It must be remembered, of course, that the analysis has been simplified at various

points by ignoring multiple poles, zeros and poles exactly on the real frequency axis,

etc.



CHAPTER XII

Topics in the Design of Equalizers

12.1. Introduction

This chapter continues the discussion of transfer functions, with special

reference to equalizers, in terms of the foundation laid down in Chapter XI.

The chapter is intended as a summary* of miscellaneous methods and ideas

of interest in practical equalizer design. It is thus broadly similar to

Chapter X, which contained a similar summary for driving point functions,

and like Chapter X it can be omitted without injury to the general theoreti-

cal development of the book. If it is undertaken, however, it will facili-

tate study to recognize that much of the material it contains is essentially

parallel to the material in Chapter X, except that attenuation and phase

shift replace resistance and reactance.

12.2. Complementary Characteristics

In discussing two-terminal impedances, it was shown that if a given

impedance is of the minimum reactance type it is always possible to find a

second impedance such that the sum of the two will be a constant resist-

ance. A similar relation can be developed for minimum phase shift trans-

fer functions, if we exclude the limiting case for which points of infinite

attenuation occur on the real frequency axis itself. With this restriction,

both the zeros and poles of the original transfer impedance must be found

within the left half of the p plane, excluding its boundary. The reciprocal

transfer impedance, which, of course, will produce complementary phase

and attenuation characteristics, will evidently have the same properties.

This allows us to state the

Theorem: Corresponding to any minimum phase shift transfer func-

tion having no poles of attenuation on the real frequency

axis there exists a complementary function such that the

sum of the two gives a constant loss and zero phase shift at

all frequencies. The complementary function will be realiz-

able in a passive network if the final constant loss is at least

equal to the maximum loss of the original function on the

real frequency axis.

* There is no existing treatment of equalizers which covers all the ground of the

present chapter. For a much more thorough treatment of many of the topics, how-

ever, see O. J. Zobel, loc. cit.

249
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A simple example is given by Fig. 12.1.

0.5U, 0.5*, 0.5Rg

Fig. 12.1

12.3. Partial Product Expansion of a General Transfer Impedance

In discussing two-terminal impedances we considered two general ways
in which the impedance might be represented. The first led to the con-

struction of the complete impedance as a single elaborate Brune network.

We also saw, however, that it is possible to represent the impedance as a

combination of much simpler networks in series, by means of a partial frac-

tion expansion, provided the resistance component of the total characteris-

tic is sufficiently great. In a somewhat similar fashion, it is possible to

replace the single elaborate lattice which we have heretofore used to repre-

sent a transfer impedance by a number of simpler structures in tandem,

provided a sufficiently high constant attenuation can be tolerated. Since a

constant change in attenuation is frequently not of great significance, this

feature of the process is not as important as it was in the discussion of two-

terminal impedances.

The expansion into the tandem section configuration can be obtained

merely by rewriting the original Zt of equation (11-3) in Chapter XI as

the expression

Zt -
l
kl

(p - h) (p - h)\l
k2

(p - %o (*>- h)Y
(12_1)

where the product kik2 is equal to the k of the original equation. Evidently

each of the terms in the right-hand side of this expression is itself of the

proper form to represent a transfer impedance. The equation thus sug-

gests that the original transfer impedance can be represented by two net-

works in tandem, each corresponding to one of the terms in (12-1). The
representation will be physical if we satisfy two conditions. The first is

that the original k, which fixes the constant loss of the network, must be

large enough to allow each of the constituent networks to be assigned a

positive attenuation on the real frequency axis. Since the constituent net-

works will not ordinarily have attenuation minima at the same frequencies,

this implies in general that the composite network will exhibit a greater
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fixed loss than would be necessary to construct the structure as a single

lattice. The second condition is merely that both members of any conju-

gate complex pair of zeros or poles must be assigned either to one network

or the other. Since the order in which the zeros and poles in (12-1) are

arranged is otherwise arbitrary, and no special requirement need be placed

upon the relative numbers of the factors assigned to the two constituent

networks, these requirements still allow us to break up the complete struc-

ture in a tremendous variety of ways.

The decomposition of the network into a number of simpler structures in

tandem can evidently be continued by the decomposition of either of the

structures first found. For theoretical purposes particular interest attaches

to the result secured when this process is carried as far as possible. In this

event, many of the final structures will be of the first degree, with a transfer

impedance expression, containing a single real zero and a single real pole.

Since a pair of conjugate zeros or poles must be kept together, some of the

final structures may also have transfer impedances of the second degree. It

is easy to see, however, that no more complicated cases need be considered.

This result can be formulated as the

Theorem: Any physically realizable transfer impedance can be repre-

sented, to within a constant loss, by a combination ofpassive

constant resistance lattice sections in tandem, each of the

constituent sections being of at most the second degree.

A list of elementary first and second degree structures, correspond-

ing to the elementary transfer impedances to which this reduction may
lead, is shown by Figs. 12.2 and 12.3. In each instance it is supposed that

the elementary structure will have zero loss at one frequency. In general,

the physical configurations of the networks might be altered appreciably if

greater losses were allowed. As an aid to the use of the structures in

practical design, the figures also include rough plots of their attenuation

and phase characteristics, the attenuation and phase being represented,

respectively, by the solid and broken line curves at the right of the figures.

The two necessary first degree networks are given by structures III

and IV of Fig. 12.2. It will be seen that together these two structures

include all possible arrangements of one real zero and one real pole.

Figure 12.2 also includes the two phase correcting sections shown pre-

viously in Figs. 11.11 and 11.13 of Chapter XI. In view of their presence

we can assume that the attenuating structures are of the minimum phase

shift type. All the structures can, however, be assigned non-minimum

phase shift characteristics if we so desire. Since the physical configura-

tions of the structures remain the same when they are assigned non-

minimum characteristics, this is evidently of importance if we wish to
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simulate a non-minimum phase shift transfer impedance without using
unnecessary elements.

The second degree structures are shown by Fig. 12.3. Together, they
are sufficient to represent all possible second degree transfer impedances,
except for certain cases in which both the zeros and poles are real. These
cases are omitted since, of course, any such transfer impedance can be
represented by two first degree networks.* As Fig. 12.3 indicates, struc-
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tures V and VI will usually be required when the poles are complex and the
zeros are real, or nearly so, and VII and VIII are appropriate for complex
zeros and real poles, while any one of the structures may be needed when
both poles and zeros are complex. This correlation, however, is only
approximate.

* Naturally, corresponding second degree structures can also be found. In order
to cover all possible second degree functions we must include in Fig. 12.3 two addi-
tional networks, which are similar to V and VI except that the reactive elements in

each lattice branch are both inductances or both capacities. The conditions for

physical realizability for these two networks in terms of the a's and &'s are the same
as for the corresponding network V or VI having a reactive element of the same type
in parallel with the Zx branch.
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The element values of the first degree networks are given by explicit

formulae in Fig. 12.2. The element values of the second degree networks

are less easily written. For the structures ofV and VI they can, however,

be computed, and are shown, for the Zx branch, by Figs. 12.4 and 12.5.

In the Brune networks represented by structures VII and VIII reasonably

explicit formulae are hardly possible. It is simplest to give formulae for the

lattice branch impedance as a whole, leaving the individual elements to be
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Fig. 12.3

determined subsequently from this expression. If we write the lattice

branch Zx as

Ax + A3p + A5p
2

Zx ~ Ro A2 + AiP + A6p
2

the coefficients A\ • • • Aq must satisfy the system of equations

Ax
- A2 = bxb2 {A& - A6 ),

Ax+ A2 = axa2 (A5 + A6 ),

A3 - A4 = - (h + h) {A6 - A6),

A3 + A4 = ~ {ax + a2 ) (A5 + A6),

(12-2)

(12-3)
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where, of course, a\, a2 , bu and b2 are the zeros and poles of the second
degree function which is to be represented, and are supposed to satisfy the

inequalities given on Fig. 12.3. The four conditions (12-3) allow us to

Ki
-AVi/\A-

II

-AA/\/W

i?0 Vfa + ^2 «1 + «2~1 _ Rn
L = T ~n ' D = -^[(fa + bi)-(a1 + a2)]

pi + fa _ a\ + *2~|
2

L b\fa a xai J

\4
+ 4)~\% +

%)

p _ „ u. -i-« ~,~. ^ [(fa + ^2) - Ol + «2>]
2

*!-*>- - ~ 7-. *! = *»
{al + al) _ {bl + bl)

S2 = _-^ _ *2
= *

^1^2 + a 1^2 i?o «i«2 + fafa Ra

b\b^ — a\U2 R\ a\ai — b\bi R\

(fa + bi)a\a% — (ai + az)fafa (fa + bi) — (a\ + « 2) _V - — K2 L= — #2
*l*2 — «i«2 a\ai — b\bi

Fig. 12.4 Fig. 12.5

solve for the six A's as soon as any two, say A$ and Aq, are known. Since

(12-2) will not be altered if numerator and denominator are multiplied by
any constant, however, one of the A's is arbitrary. We can conveniently

suppose that A§ = 1. A5 is then given by

where

KlX
2 + K2x + K3 = 0, (12-4)

Kt = ^{(4 + 4) - (b\ + b\)f

K2 = H(4 + 4? -. (4 + ^l)
2
]
- (44 - h\b\)

K3 = U(4 + 4) + (bi + b\)f - 2(44 + b\b\)

and x — A*, + \jA$. In solving (12-4), the larger root must be taken,

but it makes no difference which value ofAs we choose to correspond to the

x thus determined, since replacing AB by its reciprocal merely interchanges

Zx and Zv . Once the A's are determined, the elements of the Brune net-

work can, of course, be found by the methods described previously. The
solution for the elements can be expedited by the fact that the minimum
resistance point is given by wo = A\A2IA$A§.
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12.4. Partial Product Expansion 0/ an Illustrative Transfer Function

The methods just discussed will be exemplified by the filter structure

shown originally by Fig. 11.8 ofChapter XI. The transfer impedance ofthe

structure is given by equation (11-13) of the same chapter. In order to

break the impedance up into a product of simpler expressions it is first

necessary to determine its roots and poles. This can be done by any of the

standard methods of solving for the roots of a polynomial. In the present

instance the result can be written as

(p
2 + 1.127p + 1.043) (p

2 + 0.268? + 0.981) (p + 1.183)

(p
2 + l.S625)(p

2 + 2.778)

(12-5)

The quadratic factors, such as p
2 + \.\Tlp + 1.043 or p

2 + 1.5625, repre-

sent pairs of conjugate complex zeros or poles. There is in addition a single

real zero represented by the factory + 1.183 and a single pole at infinity.

It is apparent from an inspection of (12-5) that the complete transfer

function can be represented by three elementary structures in tandem. If

we accept the factors in numerator and denominator in the order in which

they appear in (12-5) this is equivalent to rewriting the equation as

*V = AVJ (12-6)

where

^+1.127^ + 1.043
,e -*<*

p
2 + i.5625

{1Z n

e ~ k
» ^ + 2.778

(12_8)

e9i = kc (p + 1.183). (12-9)

In these expressions the constant multipliers ka, £&, and kc must be supposed

to have such values that the attenuation of each constituent network

is positive or zero at all points on the real frequency axis. The quantity A§
measures the net increase in the attenuation of the complete network which

may be required to satisfy this condition. It is evident from a comparison

of the behavior of (12-5) and (12-6) at infinite frequency that

e&o = kaki,kc/2>.$9. The k's need not be known in order to follow through

the design method outlined in Figs. 12.2 to 12.5. They are ordinarily

determined most easily by inspection of the final networks. In anticipa-

tion of the calculation, however, it may be stated that they turn out to be

respectively 1.498, 7.034, and 0.845. Thus e
A

° = 2.48, which corresponds

to a net increase in loss of about 8 db.

It is convenient to begin with the construction of a network to represent

e
6
'. The function has a zero at —1.183 and a pole at infinity. Since these
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can be identified with the quantities a and b in Fig. 12.2 it is clear from the

formulae that the required lattice is of the type indicated by III in the

figure. The solution for the elements gives the specific circuit shown by
Fig. 12.6.*

The discussion of the other constituent networks is facilitated if we make
use of the relations between the roots of a quadratic and its coefficients.

If r\ and r% are the roots of the quadratic

p
2 + ap 4- j8, for example, it will be recalled that

/3 = rir2 and a = — (rt + r2 ). In equation

(12-7) this evidently signifies that «i«2 = 1.043

and b\b?, = 1.5625, so that the corresponding

lattice must be one of the types indicated by

pIG i2.6 VI and VIII in Fig. 12.3. To determine which

should be chosen, it is convenient to write the

numerator and denominator of (12-7) in negative powers ofp. Thus if the

numerator is written as

( 1- *_1 + p~2
) 1.043 p

2

\1.043 1.043^ ^ /
F

we evidently have

—-— and
1

4
1

-
U27

'

<?ia2
~~

1-043
an

«i a2 1.043'

from which we can conclude that

4 +
a\
~

\1.043/ 1.043

With the help of a similar computation for the denominator it appears that

the required structure is of type VI. The element values for its Zx branch,

as determined from the formulae in Fig. 12.4, are shown by Fig. 12.7.

Equation (12-8) is treated in the same way except that it leads to a struc-

ture of the type indicated by VIII in Fig. 12.3. The element values for its

Zx branch, computed by the method outlined in connection with equa-

tions (12-2) to (12-4), are shown by Fig. 12.8.

As a check on this analysis, the attenuation characteristics of the three

constituent networks have been computed and are shown, respectively, by

Curves I, II and III of Fig. 12.9. The total attenuation is shown by Curve

IV. It is, of course, the same as the attenuation characteristic for the filter

given originally in Chapter XI except for an additional constant loss of 8 db.

In developing this solution, the quadratic factors in the numerator and

* All illustrative circuits, except where otherwise noted, are drawn on the assump-

tion that R = 1.
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denominator of (12-5) have been paired off in the order in which they are

written in that equation. We can evidently develop an alternative solution
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by reversing the order in which the numerator and denominator factors are

paired off. This is equivalent to replacing (12-7) and (12-8) by

^ _ ./ />' + 1 -127^ + 1.043
e" 1 =

and
P

2 + 2.778

A = ki
p

2 + 0.268p + 0.981

p
2 + 1.5625

(12-10)

(12-11)

With the help of the methods already described it is found that (12-10)

represents a structure of type VI* in Fig. 12.3 and (12-11) a structure of

* Strictly speaking, the required structure is of type VIII. Since it lies very close

to the boundary line between the two types, however, the simpler type VI has been

chosen instead. Opportunities of simplifying in this way, or of going still further by
simulating a whole group of constituents with a single elementary network, are not

uncommon with the technique.
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type VIII. The corresponding Zx branches are shown by Figs. 12.10 and

12.11 and the various attenuation characteristics by Fig. 12.12. It will be

0.fc18/> -0.45/

o-nnnnn-
0.54/

HHVNAA-1

0.83// 0.454

Fig. 12.10

Mtenua+ion in db
50

Fig. 12.12

seen that the characteristics are of essentially the same type as those

shown previously by Fig. 12.9 but the additional constant loss in the circuit

has been reduced from 8 to 4 db.

12.5. Introduction of Surplus Factors

The preceding analysis has shown that any transfer impedance with

sufficient flat loss can be represented as a composite of a number of first

and second degree lattices. Even with this restriction on the complexity

of the constituent structures, however, the networks corresponding to any

particular transfer impedance will not ordinarily be unique. For example,

one possibility of changing the individual constituent networks consists

merely in varying the order in which the factors in the numerator and

denominator of the original transfer function are paired off. This was

illustrated in the preceding section. If there are n pairs of factors to be
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established this leads to n ! possible combinations of constituent sections.

A still wider variety of constituent sections can be obtained if we include

the possibility of multiplying both the numerator and denominator of the

transfer function by additional arbitrary factors before the order of the

factors is rearranged. This procedure was used in Chapter XI, in connec-

tion with equation (11-15), in order to reduce a general transfer function to

the minimum phase case. An example of its application to an ordinary

equalizer is shown by Fig. 12.13. Structure A in the figure corresponds to

3/2p p/4

h-^\^ ^GSy^}7-

the transfer function (p + 4)/(p + 2) while B and C are the equivalent

structures which we can secure by rewriting the transfer function respec-

In forming structure C, it iis

. p + 4 p + 3 p + 4 p+l
tively as and1

p + 3 * + 2 p + \ p + 2

necessary to suppose that an additional constant loss in the circuit can be

tolerated.

For practical purposes, the use of surplus factors suffers from the obvious

disadvantages that it increases the number of elements in the circuit and
may also increase its flat loss. The method may, however, be of occasional

value in simplifying the networks which must be constructed. As an
example, let it be supposed that the mutual inductance coupling required

for the Brune networks used in realizing the transfer function of (12-11) is

objectionable. The difficulty can be avoided by writing the function as

,, p
2 + \p + 0.981 p

2 + 0.268/) + 0.981= *
t>

2 + 1.5625 p
2 + \p + 0.981

(12-12)

If we choose X greater than about 0.85 the first rational function on the

right-hand side meets the requirements for construction in the form shown
by VI of Fig. 12.3. The second can be represented by the first of the struc-

tures shown later in Fig. 12.14.

If we carry the process illustrated by (12-12) far enough, paying no
regard either to the number of elements in the network or to its flat loss, it is

possible to show that a general transfer impedance can be represented by a

much simpler set of elementary constituent sections than those shown
by Figs. 12.2 and 12.3. Thus, in discussing second degree functions previ-

ously the possibilities we were forced to consider included a pair of conju-



260 NETWORK ANALYSIS Chap. 12

gate zeros in association with a pair of real poles, a pair of conjugate poles

in association with a pair of real zeros, and a pair of conjugate zeros in

association with a pair of conjugate poles. But if we multiply and divide

a transfer impedance of the last type by appropriate real factors, it can

evidently be represented as a product of transfer impedances of the first

two types. In dealing with second degree networks, therefore, we need

l, n
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consider only functions of these types. Moreover, even with these func-

tions, the introduction of additional surplus factors evidently allows us to

choose the real zeros or poles arbitrarily, provided we compensate for the

errors thus produced with first degree networks. The only essential prob-

lem is that of representing the complex zeros or poles.

With the help of these possibilities the most general structures which are

required in constructing second degree functions can be reduced to the two

shown by Fig. 12.14. The first is appropriate for a pair of complex zeros

associated with real poles, and the second for a pair of complex poles asso-

ciated with real zeros. As the figure shows, in both networks the products

of the poles and zeros must be equal. In applying the networks, it is of

course assumed that the complex zeros or poles will be specified from the

transfer impedance to be represented and the real zeros or poles then

assigned any convenient values consistent with this restriction. Since all

the networks of Fig. 12.2 are special cases of these two, Fig. 12.14 can be

regarded as presenting a complete list of the elementary constituents of a

general transfer impedance.
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12.6. Reconstruction of the Transfer Impedance from a Knowledge of

Either Component

We saw in a preceding chapter that while the resistance and reactance

components of a physical two-terminal network can be varied with respect

to one another, the ways in which they can be varied are defined within

narrow limits. For example, if the reactance characteristic is fixed, the

resistance can be changed only by a constant, while if the resistance charac-

teristic is fixed, the reactance can be changed only by an amount corre-

sponding to the addition of an ordinary series reactance. For a minimum
resistance, minimum reactance structure, therefore, the complete imped-

ance expression can be reconstructed if we know either component alone.

A similar situation exists with respect to transfer impedances. The loss

and phase characteristics of the network can be varied with respect to one?

another only by amounts corresponding to a constant loss or to an added

all-pass network. If we assume that the network is of the minimum loss,

minimum phase shift type, the complex transfer impedance characteristic

can therefore be obtained if we know either the loss or the phase shift

separately.

The process of reconstructing the characteristic is similar to that which

we have previously described. Along the real frequency axis the even

powers in the rational function representing Zt will be real quantities

while the odd powers will be pure imaginary. We can therefore write

Zt = Ci + iuC*
(12-13)

C3 + iwCi

where C\, C2, C3, and C4 are polynomials in co
2 with real coefficients. The

attenuation and phase can consequently be expressed as

,A = C\ + <o
2
Cf = (d-MoCaHd- toCa )

Cf + a,
2
Cf (C3 + /coC4)(C3 -/coC4 )

K '

and

C2C3 — C1C4
tan B = co 2r r ' (12-15)

The latter of these can be more conveniently written as

1 + i tan B _ (Ct + iuC2 ) (C3 - iud)

\ — i tan B (C3 + i<aCi)(C\ — /C0C2)

The forms in which equations (12-14) and (12-16) have been written

indicate immediately how the process of reconstruction may take place.

Suppose, for example, that the formula for e
2A

is given. If the expression

is to correspond to a physical network, it must be a rational function of

(12-16)
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w2
.* When we determine the zeros and poles, therefore, we will find that

they occur in positive and negative pairs, one member of each pair lying in

each half of the plane. The formula for e?
A
can consequently be written as

2a = {",. (P ~ ai) (P ~ a2) • (p ~ an) ~\ [", (p + ai)(p + a2)---(p + an ) l

(12-17)

where the first bracketed expression includes the zeros and poles in the left

half of the p plane and the second bracketed expression includes their

counterparts in the other half of the plane. Evidently the first bracketed

expression can be identified with Zt and is the transfer impedance expres-

sion which we seek.

The reconstruction of the complete transfer impedance from a knowledge

of the phase characteristic proceeds similarly. If the expression for tan B
corresponds to a physical network it must be an odd rational function of

frequency with real coefficients. We begin by constructing the expression

(1 + / tan B)/(l — / tan B) as indicated by equation (12-16) and calcu-

lating its zeros and poles. Since i tan B is an odd function of frequency,

the points at which it assumes the values + 1 and — 1 are negatives of one

another. In other words, the zeros of (1 + / tan B)/{\ — i tan B) must

be the negatives of its poles. Suppose that the zeros and poles are com-

puted and arranged into groups corresponding to their locations in the

right and left sides of the p plane. The zeros in the right side of the plane

will then be the negatives of the poles in the left side, and vice versa. A
result consistent with (12-16) will evidently be obtained if we identify

C\ + i(oC2 with the product of the factors corresponding to zeros in the

left side of the plane and C3 + iooC4 with the product of factors correspond-

ing to poles in the left side of the plane. The ratio of these quantities, from

(12-13), is then the desired expression for the transfer impedance. Since

the fixed loss cannot be determined from the phase characteristic this ratio

can be multiplied by any suitable constant.

In both of these reconstructions, the resulting transfer impedance is

unique only if we assume that the structure is of the minimum phase shift

type. This is, of course, obvious when we begin with the attenuation char-

acteristic. In addition to the Zt specified by equation (12-17) an infinite

number ofother solutions can be obtained by interchanging the poles on the

left-hand side of the p plane with their negatives or by adding extra zeros

and poles symmetrically located with respect to the real frequency axis.

When we begin with the phase characteristic itself, on the other hand, we

* In addition, the coefficients must, of course, be real and there can be no zeros and

no odd order poles on the real frequency axis.
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might expect that there would be no difficulty in determining whether the

network is of minimum or non-minimum phase shift type. Uncertainty

arises, however, when we select the zeros of Zt from the zeros of

(1 + i tan -S)/(l — i tan B). While it is clear that only zeros in the left

side of the p plane are admissible, it is not, in general, necessary that all the

zeros in this region be chosen as zeros of Zt. Some zeros can be omitted

from Zt by regarding them instead as zeros of C3 — iuCi in (12-16). In

this case the corresponding poles of Zt, as determined from the rule sug-

gested by (12-16), will lie in the right-hand side of the plane, so that a solu-

tion which is of the non-minimum phase shift type is obtained. Evidently,

several solutions may be possible by omitting various combinations of

zeros.* This is illustrated in the next section.

12.7. Networks with Equal Phase Shifts

The discussion just finished suggests that it should be possible to dupli-

cate the phase characteristic of a non-minimum phase circuit with a mini-

mum phase circuit. This is a question of some special interest, since it

represents a point at which the analogy between driving point and trans-

fer functions breaks down. Evidently we cannot duplicate the reactance of

a pure reactance network with a minimum reactance structure. Moreover,

it implies that although we cannot obtain a varying attenuation without a

corresponding phase shift we can arrange two transmission paths which will

have a varying difference in attenuation with no relative phase displace-

ment. If the attenuation characteristics of the two paths were made
approximately equal to one another over a specified range and a device

were added to balance the outputs of the paths against one another such a

circuit might conceivably be used as an alternative to ordinary filters in

providing frequency selectivity.

As an example of the possibility of securing equal phase characteristics

from minimum and non-minimum phase shift devices we may consider

the function (1 + iX)2
, where X is some reactance. This expression evi-

* Each time a zero is omitted, however, the degree of the numerator of the corre-

sponding Zt goes down while that of the denominator goes up. Since the rational

function representing a physical transfer impedance can have no zeros at infinity this

sets a limit on the total number of zeros which can be omitted. Evidently, no zeros of

(1 + * tan B)/(l — * tan fi) in the left half-plane can be omitted in constructing Zt
unless the total number of zeros in the region exceeds the number of poles by at least

two. This can be correlated with the net phase displacement between zero and
infinity through contour integral considerations. If the net phase shift is negative, the

characteristic is non-physical. If it is either zero or 90°, the characteristic must be of
the minimum phase type. Beyond this point ambiguity arises because a displace-

ment of 180° can be attributed either to an all-pass section or to a minimum phase
network having infinite loss at the ends of the spectrum.
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dently represents the transfer function through the two identical lattices in

tandem shown by Fig. 12.15«. The associated phase shift, 2 tan
-1

X,
however, is the same as that of the all-pass network shown by Fig. 12ASb.

Evidently, therefore, the fact that a network has an all-pass phase charac-

teristic is not sufficient to ensure that it is actually an all-pass network.

It may be a combination of simple equalizing structures.

The result just established can be made somewhat more general. If

we set iX = ap the quantity (1 + iX) can be regarded as the factor

representing a real zero in a general transfer function. Similarly, if

JT^U r-F%h iX = aP + P/P, we can regard (1 + iX)
° SX^WJ7? S^LwwJ^ as a representation of a pair of conjugate

1 >VX 1
^N<^v complex zeros. The relation illustrated

s' ^^ s' ^S*\
by Fig. 12.15 is thus equivalent to the

(A)
statement that the phase shifts associated

Yfx
\ , & with the zeros of a general transfer func-

<&> ^*' tion are equal to half the phase shifts of

, ^\. a number of elementary phase correctors

^ -^—

o

of the types illustrated by Figs. 11.11 and
(B)

11.13 of Chapter XI. Since the same
result must hold for the poles of the

function except that the phase shifts are negative we are thus led to the

Theorem: A general transfer phase characteristic is always half the

characteristic of a number of elementary positive or nega-

tive phase correctors.

With this theorem as a basis it is easy to formulate the relations which

must hold between two transmission paths if they are to have the same

phase characteristic but different attenuation characteristics. The princi-

pal requirement is that the transfer functions in the two paths be selected

initially so that their ratio or product is the square of a rational function of

frequency. This is accomplished if the two transfer functions appear as

e9le
e* and e9le

63
, where e

e
* and e6' represent complementary characteristics

and eBl is any arbitrary transfer function. It is apparent from the comple-

mentary relationship and the preceding theorem that the difference between

the phase characteristics in the two paths must then be the characteristic

of a number of integral positive or negative phase correctors. In order to

make the phase difference zero it is merely necessary to add corresponding

positive all-pass sections in one path or the other.

12.8. Choice of Parameters

The choice of the coefficients in the rational function representing the

transfer impedance to meet a prescribed characteristic can evidently be
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accomplished by methods similar to the linear equation scheme described

in connection with two-terminal impedances. For example, if we are

attempting to simulate a given attenuation characteristic and a given phase

characteristic simultaneously, we can write

T t 7^1 1 w'f + '"
-Z,-«*co.fl + fr* sin B, (12-18)

or, equating real and imaginary parts separately,

(«o — «2"
2 + «4"

4 — •••)— e
A
cos B (£ — ^2"

2 + hu* — • • •)

+ <o<?
A

sin B (h - hv? + h^ ) = 0; (12-19)

w(«i — a3<a
2 + «5w

4 — •••)— oie
A

cos B (by — b3o>
2 + £5co

4 — • • •)

- e* sin B (b - b2J + fc»
4

) = 0. (12-20)

Ifwe substitute sets of values of o, A, and B in these expressions, by the use

of selected points taken from the prescribed characteristic, we will evi-

dently secure a set of simultaneous linear equations whose solution deter-

mines the a's and b's.

We can also deal with the attenuation characteristic and phase charac-

teristic separately. Thus if we are particularly interested in the attenua-

tion we may write

Co + Cl^ + C2^ + ... + Cn^ = ^ (i2_2i)2»
do + di&

2 + d$u + • • + dnbi

or

(co + c^2 ++ cno,
2n

) - *
2Vo + di<»

2 ++ dnw2n) = (12-22)

and, of course, as in the general case, this basic linear relation gives rise to

a set of simultaneous equations for the determination of the c's and d's.

The complex transfer impedance expression can then be reconstructed by

the method described in the preceding section. For the reasons discussed

in connection with the corresponding problem in two-terminal impedance

design, this is an appropriate method even when we are finally interested

in the simulation ofphase shift as well as attenuation. Reliance in meeting

the phase requirements is based upon the final design of a separate phase

corrector.*

The desirability of using these methods in practical circumstances

depends largely upon the particular problem in hand. In many instances a

structure which will furnish a required characteristic with sufficient accu-

* For a more detailed exposition see Zobel, loc. cit.
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racy can be determined by inspection and the design accomplished without

the labor of setting up auxiliary mathematical machinery. The simul-

taneous equation process, however, furnishes a simple and systematic

design method when the straight cut-and-try procedure fails.

12.9. Networks Equivalent to the Lattice

For purposes of theoretical analysis, the lattice, which is the only struc-

ture we have considered thus far, is particularly valuable both because of

its generality and because of the simplicity and symmetry of its design

equations. In practical application, however, other types of circuits are

frequently preferable. It will be the object of this section to list a number
of network equivalences by means of which the application of the lattice

analysis to other types of structures can be facilitated.

The basic equivalence between the lattice and any other symmetrical

four-terminal network is that illustrated broadly by Fig. 12.16*. The T

o-

i/Oi c' 1

1*1nl
o- B B' d' 1

o I"
7 a

V i. x s

B
•£*

1

n

Fig. 12.16 Fig. 12.17

structure appearing in the figure is introduced merely for definiteness and is

not intended to imply that the equivalence is restricted to any particular

configuration. The equivalence is easily understood if we notice that the

branches of an actual lattice can be obtained directly from external imped-

ance measurements if we introduce appropriate short circuits between pairs

of external terminals to eliminate one pair of branches at a time. For

example, if we short-circuit terminals A and C and also B and D in the

* This is a slight modification of the equivalence originally described by G. A.

Campbell. See " Physical Theory of the Electrical Wave Filter," B.S.T.J., Nov.,

1922.
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lattice of Fig. 12.17, the impedance between AC and BD will obviously be

Zy/2. Similarly, if we connect A to D and B to C, the impedance between

AD and BC will be Zx/2. Figure 12.16 states, in effect, that the branches

of the lattice equivalent to a general symmetrical network can be deter-

mined by making these two measurements on the corresponding terminals

A, B, C, and D of the general structure.

The ideal transformers at the ends of the structure in Fig. 12.16 are- of

unity ratio. They are introduced merely to take account of the fact

that the network whose lattice equivalent we are determining is not neces-

sarily a balanced structure, and it is only its side circuit properties that are

considered here. The arrows in Fig. 12.16 indicate the proper orientations

of the transformer windings. Since a reversal in the direction of one

winding amounts merely to an interchange of Zx and Zy in the equivalent

lattice, however, or to a phase reversal in going through the network, this

is almost a matter of indifference.

The transformers can evidently be omitted when the network under con-

sideration is completely balanced. If we change the diagram slightly they

can also be omitted for a completely unbalanced network, such as the

particular T structure shown in Fig. 12.16. We notice that the only differ-

ence between the measurements determining Zx and Zy is the fact that the

current in one transformer is reversed in going from one measurement to the

other. From symmetry, however, the currents in the two transformers

must be of equal magnitude in each measurement. In determining Zv the

currents in the secondaries flow in the same direction, so that the voltage

between A' and B' is equal to that between C' and D', or in other words

terminals A' and C' are at the same potential. The impedance Zvj1,

which is measured between AC and BD, is consequently the same as that

which would be found if we omitted the transformers and measured

directly between terminal B' and terminals A' and C' strapped together.

When we determine Zxy on the other hand, the currents in the two second-

aries are in opposite directions, so that no current enters or leaves the

network through the ground wire. The measurement would consequently

be unchanged if the bottom terminals of the transformer secondaries were

connected directly together rather than to terminals B' and D' . If we take

account of the fact that a four-to-one impedance transformation results

from the fact that with this connection the primary windings of the trans-

former are in parallel while their secondaries are effectively in series, we can

therefore conclude that the impedance Zx/2 is just one-fourth the imped-

ance which would be found between terminals A' and C' if no external

connections were made to any other part of the circuit, including termi-

nal B' . This leads to the equivalence between a lattice and a symmetrical

unbalanced network shown in Fig. 12.18, where Z\ represents the im-
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pedance between A' and C' which has just been described, and Z2 repre-

sents the impedance between A' and B', with C' strapped to A', which was
described earlier.*

2*,J

Fig. 12.18

12.10. Illustrative Lattice Equivalences

The application of the equivalence of Fig. 12.18 to T and w networks is

shown in Figs. 12.19 and 12.20. The central branches of the T and it

structures are represented in two equal parts, to illustrate the fact that the

°—[£3-1

z.

o

1
—°

—
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—o

—
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\

o

o

Fig. 12.19

Zx and Zy branches of the equivalent lattice are respectively equal to the

short-circuit and open-circuit impedances of the half T or w sections. It

is easy to see that a physical lattice can always be obtained for any T or x

structure, but that the converse is not necessarily true.

* Essentially the same relationships are expressed by the so-called bisection theorem,

due to Bartlett (" The Theory of Electrical Artificial Lines and Filters," p. 28).

Bartlett's theorem states that the Zx and Zy impedances of the lattice equivalent of a

given symmetrical network can be found by bisecting the network along the plane of

symmetry and measuring the input impedance of either half when the terminals

which would normally connect it to the other half are first short-circuited and then

left open. This is an obvious relation from Fig. 12.18 since it follows from symmetry

that in the measurement symbolized by Z\ all the terminals on the plane of sym-

metry are at the same potential, so that they can be connected together without

affecting the result, while in the Z2 measurement the wires connecting the two

halves of the network carry no current, so that they can equally well be opened.

The equivalence of Fig. 12.18, however, applies also to the exceptional circuit which

has symmetrical external characteristics without being structurally symmetrical.
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Other examples of these equivalences are furnished by Figs. 12.21 and

12.22. As the figures imply, an impedance which occurs either in series or

t-7 —r, ?-Z

z

o

—

b
Zb

o ' o

-DiD

Fig. 12.20

in shunt with both lattice branches can be removed and placed in series or

shunt with the lattice as a whole. For purposes of equalizer design perhaps

z zx zs
/

4iip7

Fig. 12.23

the most useful application of these relations is that shown by Fig. 12.23.

Since the series and shunt resistances appearing outside the lattice on the
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right-hand side of Fig. 12.23 can be regarded simply as attenuating pads,

we notice that the essential effect of introducing a constant loss is to add
series and shunt resistances to both lattice branches. Conversely, if a

lattice is of the minimum loss type, either the resistance or the conduct-

ance of each branch must vanish at some point along the real frequency

axis.

A more difficult example of these equivalences is furnished by Fig. 12.24,

which represents the combination of two lattice networks to form a single

Fig. 12.24

equivalent lattice. As the relation ZXxZVl
= Zx^ZVl shown in the figure

implies, the original lattice structures must have the same image impedance.

This condition is necessary, in general, if the resulting structure is to be

symmetrical. Our preceding discussion in this chapter has been largely

devoted to a description of the ways in which a general transfer impedance

characteristic could be broken down to produce a number of very simple

structures in tandem. The equivalence shown by Fig. 12.24 evidently

represents the inverse operation, by means of which the elementary struc-

tures can be recombined as far as desired.

12.11. Alternative Forms of Equalizing Structures

With the help of these equivalences a lattice equalizer can be replaced

by a number of alternative structures, of which

two of particular interest are described in this

section. The first is an equivalent of the

lattice only in a restricted sense. It is ob-

tained merely by replacing either the Zx or

Zy branches of the original structure by sim-

ple resistances equal to the terminal imped-

ances as shown by Fig. 12.25. The transfer

impedances of the resulting networks are easily

computed if we first represent them as T's or

Fig. 12.25 x's by means of Fig. 12.19 or Fig. 12.20. In
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both cases we find

Zx1+ R
ZT = 4Ro r2 - (12-23)

'"I
As we see by comparison with equations (11-3) and (11-6) of Chapter XI
this is just twice the transfer impedance of the original network. In ex-

change for an added attenuation of 6 db, therefore, we secure a considerable

simplification in the complexity of the network. It is to be observed, how-
ever, that the new networks are not of constant R type. The " equiva-

lence " therefore holds only for the transmitted current when both terminal

impedances have their assumed values. The networks cannot be used if

the terminal impedances do not meet this condition, or if we must combine
a number of structures in tandem.

A second alternative for the lattice is the bridged-T structure shown by
Fig. 12.26.* The equivalent lattice of this network, as determined by the

method of Fig. 12.18, has a Zx branch consist-

ing of the Zc impedance of the bridged-T in

parallel with half its Za impedance, while

the Zy branch consists of the Zc impedance in

series with twice the Zj, impedance. If the

bridged-T is physically realizable, therefore,

the equivalent lattice is always realizable, but

we can convert the lattice into a bridged-T FlG 12_26

only if we can find an impedance, to represent

Zc, which is in series with one branch of the lattice and in parallel with the

other.

For purposes of equalizer design, it is customary to suppose that the

bridged-T is a constant resistance structure in which the ZB impedance is

equal to the terminating impedance R , as shown by Fig. 12.27. With this

value of Zc it is easily shown that the constant resistance condition will be

met provided Z\\ and Z2 \ are inverse networks with an impedance product

*The bridged-T is discussed here because it is the configuration which is most

used in equalizer design work. In other applications, however, it is at least equally

customary to convert the lattice into any one of several combinations of two im-

pedance branches, proportional respectively to the Zx and Zy impedances of the

original lattice, and a two or three winding transformer. A good brief list of these

possible configurations is given in Starr, " Electric Circuits and Wave Filters," p.

366. A very general theoretical study of the possible ways of constructing lattice or

bridge circuits with the help of transformers is given by Campbell and Foster, " Maxi-
mum Output Networks," Trans. A.I.E.E., Vol. 39, Part I, 1920, pp. 231-280.
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given by Z\\Z2\ = Rq- When the structure is terminated at the far end by

the circuit resistance Ro, the first series resistance R , the two inverse

impedances Zn and Z2 i, and the final terminating impedance represent the

four arms of a bridge whose galvanometer

arm is the second series Ro- The relation

Z\\Z2 \
= ^o» however, requires that the bridge

be balanced so that no current can flow through

the galvanometer arm. Strictly speaking,

therefore, this element of the network is super-

fluous. It might be replaced by either an open

circuit or 'a short circuit without disturbing

either the driving point impedance or the trans-

mission characteristics of the structure. These two possibilities are ex-

hibited by Figs. 12.28 and 12.29. It is customary to include the second

resistance, however, since its presence makes the circuit less sensitive to

slight departures of the terminal impedances from their nominal values.

Fig. 12.27

ZU

R ?

Z
21

O —O

-cSd
R«

-21

Fig. 12.28 Fig. 12.29

12.12. Design Formulaefor Bridged-T Equalizers

Although the bridged-T has been developed merely as an equivalent of

the lattice, it is ordinarily easier to apply it to design problems if we deal

directly with its own design equation. Upon substituting the expression

for Zx in terms ofZn in equation (11-6) of Chapter XI we find

-+a- (12-24)

Since for this circuit ZT = 2R e
e

if both terminating impedances are equal

to Ro, the transfer impedance of the bridged-T is proportional to the design

impedance Zn in series with a resistance. We can apply equation (12-24)

immediately to develop certain properties of the bridged-T in analogy to

properties we have already established for the lattice. For example, we

saw in connection with Fig. 12.23 that the addition of a constant loss to the

lattice was essentially equivalent to adding resistances in series and parallel
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with both lattice branches. In order for a lattice to be of the minimum loss

type, it was necessary for either the resistance or the conductance compo-
nent of each branch impedance to vanish at some real frequency. Ifwe add
a constant attenuation, A , to the 8 defined by (12-24), on the other hand,

the expression becomes

w,
(
1+ f)
e^Zn + R (^ - 1)

J+Ao

= 1 +
Ro

(12-25)

Aside from a change in scale, the addition of a constant loss to the bridged-T

is therefore equivalent to the addition of a resistance in series with Zn.
Conversely, a constant loss can be subtracted from the bridged-T if the

resistance component of its Zn impedance is greater than zero at all real

frequencies.

The use of equation (12-24) also allows us to replace the bridged-T by a

simpler structure in somewhat the same way that a constant resistance

lattice can be replaced by one of the networks shown by Fig. 12.25. In this

instance, however, the substitute network is still more elementary. It

consists merely of a simple series or parallel impedance proportional to the

original Zn or Z2 i branch, as shown by Figs. 12.30 and 12.31. The fact

2Z,
li

R, R« :r« 2 Z21 R»

Fig. 12.30 Fig. 12.31

that the insertion loss characteristics of these circuits is the same as that

defined by equation (12-24) can be seen by inspection. Although these

circuits are logically analogous to those of Fig. 12.25 they have the advan-
tage that we now no longer are required to accept an additional 6 db in the

loss characteristic. Of course none of these " equivalents " can be used if

the terminating impedances are not at their prescribed values or ifwe wish

to combine a number of structures in tandem.

It is apparent from the preceding discussion that the constant resistance

bridged-T of Fig. 12.27 is considerably less general than a constant resist-

ance lattice. For example, the two can be made equivalent only if re-

sistances R are found in parallel with the Zx branch of the lattice and in
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series with its Zv branch. The significance of this structural requirement

is best seen from equation (12-24). It is apparent from this equation that

Zn will be a physical impedance only if e
e

is a minimum phase shift expres-

sion, and then only if the phase shift is nowhere greater than ±90°. On
the other hand, if we begin with any such expression and introduce enough

constant loss a physical Zn is always obtainable.

In general, the limitation on the maximum phase shift of a bridged-T

becomes more troublesome as the complexity of the structure increases. In

dealing with lattices, for example, we saw that two simple structures in

tandem could always be replaced by one more elaborate lattice. No such

relationship can exist for bridged-T's, however, since two structures whose

individual phase shifts are less than 90° may easily give a total phase shift

in excess of this limit. With increased complexity, therefore, the bridged-T

becomes relatively less and less general. On the other hand, it is easily

seen by inspection of the design formulae that when the minimum phase

requirement is met, the structures of Fig. 12.14 can always be built as

bridged-T's. If we begin by splitting up the characteristic into sufficiently

simple components, therefore, any minimum phase shift transfer impedance

can be represented by bridged-T networks.

For practical purposes, bridged-T equalizers can usually be designed most

simply on a cut-and-try basis. The configuration adopted for the Zlx

branch is most commonly a resistance in parallel with a network of pure

reactances. It is evident that the resulting attenuation characteristic will

reach equal maxima at every anti-resonance of the reactance network, and

will become zero at every series resonance. This is illustrated by Fig. 12.32.

FIG. 12.32

A structure of this type is usually applied when the required loss characteris-

tic in the frequency range of interest is similar to the characteristic of

Fig. 12.32 between two successive maxima, two successive minima, or one

maximum and the preceding or following minimum. Since the maximum
value of attenuation is fixed by the parallel resistance, this element of the

network can usually be chosen immediately. The design problem there-

fore reduces to the choice of a suitable two-terminal reactive structure. In

the useful range, however, the resonances and anti-resonances are fixed by

the location of the maxima and minima of loss. The cut-and-try work

therefore consists chiefly in the selection of the constant multiplier of the

reactance expression, and perhaps additional elements resonating outside
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the useful range, in order to shape the characteristic at intermediate points.

For purposes of calculation, the equation

£ - l + R (G> + B2)' (12_26)

which is easily derived from equation (12-24), may be used. In this

expression G is the conductance of the (known) parallel resistance, while B
represents the susceptance of the reactive network which must be found.



CHAPTER XIII

General Restrictions on Physical Network Characteristics
at Real Frequencies

13.1. Introduction

The preceding chapters have shown that the mathematical specifica-

tion of any of the usual characteristics of a network must be restricted in

certain ways if the structure is to be physical. In particular, it is necessary

for most network functions' to behave in an especially simple way in the

right-hand half of the p plane. This formulation of physical realizability

is perhaps adequate in a formal sense. In practical engineering problems,

however, we usually wish to be concerned only with the behavior of the

structure at real frequencies. The question thus naturally arises as to the

ways in which the restrictions on network performance in the right half-

plane affect the characteristics which can be secured from physical circuits

at points on the real frequency axis.

This problem has already been discussed at some length in Chapter VIII
and Cauchy's theory of integration in the complex plane was introduced

there as the principal mathematical tool which would be used in treating it.

The theory was applied, however, only to the demonstration of Nyquist's

stability criterion. In the present chapter and the ones which follow it the

theory will be used to develop a number of additional relationships which

physical network functions must satisfy. The discussion will utilize in

particular Cauchy's theorem on the integral of an analytic function around

a closed contour and the various special results on the integration ofpowers
of z on circular arcs, which were described in the introduction to Chap-
ter VIII. The student should reread this material, if necessary, before

undertaking the present chapter.

13.2. Nature of Restrictions on Physical Network Characteristics

Before beginning the analysis, it may be profitable to consider the general

nature of the relations which one should anticipate. Essentially, the

problem of providing a given characteristic with a physical network is that

of simulating the characteristic over a prescribed range with a rational

function of frequency. If there were no restrictions on the rational func-

tion, this could always be done as accurately as we please. In general,

however, the resulting function would have zeros and poles scattered in all

parts of the p plane. Since only half the plane is actually available, this

means that in a certain sense the conditions of physical realizability specify

276
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half of any problem. Broadly speaking, for each fact we can introduce

arbitrarily, a matching fact is forced upon us if the zeros and poles are to

lie in the proper half of the plane. It is as though we were Nature's tenants

on a share basis. We must surrender half the crop for the privilege of farm-
ing the land.

As an example of this sort of relation, we may consider the processes of
reconstructing a complete impedance from a known resistance characteris-

tic or a complete transfer function from a known loss characteristic, which
were described in Chapters X and XII. In each case it is possible to start

with any even rational function of frequency to represent the given resist-

ance or attenuation characteristic. Evidently, therefore, there are no
restrictions on the problem of simulating any prescribed resistance or

attenuation characteristic we choose as long as we assume even symmetry.*
In reconstructing the complete driving point or transfer impedance, how-
ever, we found in general that the result is completely prescribed from the
initial function. As our payment to Nature for freedom to choose the
resistance or attenuation characteristic as we please, therefore, we must sur-

render control of the reactance or phase characteristic. Conversely, if we
choose the imaginary component we find that Nature insists on specifying

the real component. Our only advantage in the bargain lies in the possi-

bilities presented by non-minimum phase or reactance networks.

Contour integral theorems can be developed to express these relations

and many others besides. For example, instead of choosing as our half of
the characteristic the real component alone or the imaginary component
alone over the complete frequency spectrum, we may elect to specify the
real component in some parts of the spectrum and the imaginary component
in the rest of the spectrum. The remaining portions of the complete char-

acteristic are then determined. We may also choose to specify only a single

isolated fact about the situation. Nature's due, then, is a corresponding
isolated fact. For example, if we specify that an impedance shall vanish at

infinite frequency like a prescribed capacity, but impose no other restriction

on the characteristic, there is a single requirement on the behavior of the
impedance at finite frequencies. Similarly, if we specify, as an isolated fact,

that the difference between the attenuations at two chosen frequencies shall

be a prescribed amount, there exists, as an isolated fact, a corresponding
single requirement on the phase characteristic of the structure.

Contour integral relations of these types exist in great variety. Unfortu-
nately it is extremely difficult to organize all the possible relations in any
very coherent way. In a purely mathematical sense most of the formulae
are related to one another by such obvious transformations and changes of

* Except, of course, for the fact that if the discussion is restricted to passive struc-

tures, the resistance or attenuation cannot be negative.
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variable that there is no good reason for picking out any particular set as

independent. Basically they are all merely reflections of Cauchy's theo-

rem. Thus the expressions which one chooses to regard as distinctive must
be selected for their physical meaning for the particular problem in hand.
It is easy to isolate a limited set which are useful for relatively common
problems. Beyond this point, however, there is an almost inexhaustible

list of formulae which might conceivably be useful in more specialized

situations. Reliance here must evidently be placed upon the manipulative

and interpretive skill of the individual engineer.

As a practical program, the present chapter will be devoted principally to

theorems of the type which apply when a single isolated restriction is

placed upon the function. Most of the discussion will be devoted to two
of the simplest theorems. Various devices by means of which a wider

variety of relations can be built up are described more briefly at the end of

the chapter. Later chapters give expressions which are particularly appli-

cable when we have chosen one half of the characteristic completely, either

by specifying the real component at all frequencies, the imaginary com-
ponent at all frequencies, or the two components alternately in successive

frequency ranges.

13.3. Analytic Conditions

The contour integral will be taken over the path shown in Fig. 13.1.

This is the same path as that used in Chapter

VIII to demonstrate Nyquist's criterion

for stability. As in that discussion, the semi-

circular part of the path is supposed to be

extremely large while the small indentations

on the real frequency axis are included to

avoid any singularities in the integrand

which may happen to fall there. The in-

tegral around the complete path will be

symbolized by <p and the integral around

the semicircular portion of the path by 4 •

Let the function in which we are interested be represented by = A + iB.

It will be supposed that 6 satisfies the following conditions:

1. The real component, A, is an even function of frequency.

2. The imaginary component, B, is an odd function of frequency.

3. There are no singularities in the interior of the right half-plane.

4. Singularities at any finite point po on the real frequency axis are of

such a nature that (p — po)d vanishes as p approaches p - This

p plane

Fig. 13.1
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admits logarithmic singularities and branch points but not poles on

the real frequency axis.

In general, it will be supposed that 6 is analytic at infinity. Many of

the theorems, however, admit a singularity here provided 6/p vanishes

when p is made indefinitely great.

If is assumed to be analytic at zero and infinite frequency, the quan-

tities A , B , Ax, Bx, etc., will be defined as the coefficients in the

corresponding power series expansions

= A + iBou + Ax<f + iBiJ* + • • • (13-1)

and

e = Ax + i^ + ^ + i

B
}+.... (13-2)www

The most important functions satisfying these restrictions are passive

impedances of minimum reactance type, or passive admittances of mini-

mum susceptance type, and transfer loss and phase functions of minimum
phase shift type. The transfer function, for example, is included because,

in addition to satisfying the obvious requirements 1 and 2, it has no
singularities in the interior of the right half-plane and the singularities, or

infinite loss points, on the real frequency axis are only logarithmic. Mini-

mum reactance impedance functions and minimum susceptance admittance

functions are also included but non-minimum functions must be excluded

because they have poles on the real frequency axis.

In addition to these two principal possibilities may also represent func-

tions of several other types. For example, we can include active driving

point functions in the analysis if we are careful to analyze a network which
is open-circuit stable but not short-circuit stable as an impedance rather

than as an admittance, and vice versa. We can also admit the logarithm

of any passive two-terminal impedance without restriction to a minimum
reactance or susceptance structure. Conversely, transfer impedances or

admittances can be treated arithmetically in most cases without the neces-

sity of expressing the transmission in terms of attenuation and phase.

Since branch points on the real frequency axis are admissible, may also be
an image impedance or an image transfer constant.

These functions are all of a type which would be appropriate for the

analysis of networks of lumped elements. It is only lumped constant cir-

cuits which are of concern here. With suitable modifications, however,

the contour integral theorems can be extended in many cases to circuits

with distributed elements also. This question is discussed briefly at the

end of the chapter.

In general, the first step in developing the theorems which follow is to



280 NETWORK ANALYSIS Chap. 13

combine 6 with some other function in such a way that the result vanishes

at infinity at least as rapidly as of1
. This makes it possible to evaluate

the contribution of the large semicircular path to the complete integral.

If the integrand vanishes more rapidly than co
-1

, it follows from the dis-

cussion in Chapter VIII that the integration along the semicircular path

can be neglected entirely as soon as the path is made sufficiently large.

Otherwise, this part of the loop must be taken into account, but its con-

tribution is easily determined from equation (8-4) of Chapter VIII.

The contour integration thus reduces in effect to an integration along the

real frequency axis from some very large negative frequency to an equally

large positive frequency. But the real and imaginary components of 6

have respectively even and odd symmetry about the origin on the real fre-

quency axis. If the same symmetry is maintained in the complete inte-

grand the positive and negative frequency halves of the integral of the

imaginary co nponent will evidently cancel out, while the integral of the

real component can be replaced by twice the integral along the positive half

of the axis alone. From Cauchy's theorem, however, the integral around

the complete contour is zero. In the result, therefore, the integral of the

real component over all positive frequencies is set equal either to zero, if

the integrand vanishes more rapidly than uT1
at infinity, or to some known

constant, if the integrand varies exactly as uT1
.

13.4. Resistance Integral or Attenuation Integral Theorem

The simplest possible example of this process is obtained if we construct

an integrand which varies in the desired way at high frequencies by sub-

tracting Ax in equation (13-2) from 0. Since the integral around the

complete loop must vanish, we can therefore write

/ (6 - AK ) do = 0. (13-3)

This can be broken up into an integration around the semicircle and an inte-

gration along the real frequency axis, and the limits of integration for the

latter can be taken as — °o and 4- <» if the path is made indefinitely large.

This gives

f (d - Ax ) do, + f (d - Am ) doo = 0. (13-4)

In the second integral of (13-4), only the leading term, i(Bx/o>), of the

power series for 6 — Am in (13-2) makes any contribution to the result.

If we also break up the first integral into separate expressions for the real

and imaginary components of 6 — A*, this allows the complete expression



PHYSICAL NETWORK CHARACTERISTICS 281

to be written as

f (A- AJ do>+i f Bd<* + <fi— da = 0. (13-5)
J -00 «/-00 J (J

Since B is an odd function of frequency, the second integral in equation

(13-5) must be equal to zero. Correspondingly, since A is even, the first

integral can be replaced by twice the integral which would be obtained

between the limits zero and infinity. Finally, the third integral can be

evaluated as wBx by the formula given in equation (8-4) of Chapter VIII.

Collecting results, therefore, the expression re- „
duces to

J (A-AJdu=-^Bx . (13-6)

1 \L ' R„ I
<>

l-vJU!_r/VVvA-1

The theorems of the chapter will be illus-

trated by the two networks shown in Fig. 13.2.

If we let 8 represent the impedance of one of the

networks A and B will be respectively resist-

ance and reactance. We see by inspection that

Ax = and Bx = —1/C. Equation (13-6) consequently becomes

Rd<*=~- (13-7)

This result is easily confirmed by direct calculation. The resistance of

the network in Fig. 13.2a, for example, is R = Rq/(1 + o)
2
CqRo). Substi-

tuting in (13-7) therefore gives

d(R Cu)

Jo
Rdu=M

J 1 + co'CV" =
CJo IT

= - [tan * R Cu]o = —

(foca?
(13-8)

by ordinary integration.

The calculation for the structure of Fig. 13.2£ is somewhat more difficult

but it can be made by the same general method. The resistance of the

structure is given in general by

R =
1 + (R%C2 - 2Z,C>2 + L2CV

'

(13_9)

If this is split into partial fractions the resistance integral appears as

rAda , -^- r^, + J- A**, (iwo)
J a - &J 1 + <xo> P - aJ 1 + pj2
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where

a = \(RlC2 - 2LC + RoCVRlC2 - 4LC),

p = \{RlC2 - 2LC - R cVRlC2 - 4LC).

(13-11)

By integrating each term in the manner indicated by (13-8) we secure again

the result ir/2C. The equality of the areas under the resistance charac-

teristics where the capacity C is fixed is illus-

trated by Fig. 13.3. The Curves I and I'

give typical characteristics for the structure

of Fig 13.2a. Curves II and II' represent

characteristics obtained from Fig. 13.2^.

Equation (13-7) also holds for any other

minimum reactance network including the

parallel capacity C. It does not hold, how-
ever, for such structures as those shown by
Figs. 13.4 and 13.5 since neither of these con-

figurations is of the minimum reactance type. In order to perform the

contour integration for the impedance of such a network, it is necessary to

indent the contour slightly as indicated by Fig. 13.1 in order to avoid the

Fig. 13.3

—

r

11-

' -»
To 1—

Fig. 13.4 Fig. 13.5

poles of impedance, and the contribution of these small indentations to the

complete loop integral also requires consideration. Since the residue at a

pole on the real frequency axis is always positive, however, the sign of this

contribution, at least, is known. We can if we like therefore generalize

(13-7) to include both minimum and non-minimum cases by writing it in

the form

Xo -1C (13-12)

where the equality sign holds for minimum structures.

Equation (13-6) has been included as equation I (a) in the list of formulae

given at the end of the chapter. The remaining equations \(b), 1(c) and
I (d) in the first group of formulae in the list are alternative forms of the

same relation. For example, equation \(b) is the same as 1(a) expressed
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on an inverse frequency scale, while 1(c) and 1(d) are relations obtained by-

integrating the first two expressions by parts.

13.5. Equalizers and Local Feedback Circuits with Parasitic Capacities

By interpreting 9 in other ways than as an impedance, the general

equation (13-6) can be made to yield a variety of other special results.

Many of these are of importance in considering the characteristics obtain-

able from a network including some parasitic element, such as a shunt

capacity, which defines its behavior at high frequencies. If 6 is chosen

appropriately in such a situation it is ordinarily possible to identify A with

the characteristic in which we are interested at ordinary frequencies, while

Bx can be evaluated in terms of the parasitic element from a study of the

high frequency behavior of the structure. By using (13-6), then, the

maximum response obtainable from a physical structure including the pre-

scribed parasitic element can be computed.

Most of these applications depend also upon some analytic tools we have

not yet developed and are most readily considered at a later point. In

order to illustrate the process, however, we will consider the particular 6

given by

('
log 1+-^-- (13-13)

This equation represents the loss and phase shift of a constant resistance

equalizer of the general type described in Chapter XII and shown here by

Fig. 13.6. In accordance with the general relations developed in Chap-

ter XII the analysis also covers situations in

which the equalizer is replaced by a simple two-

terminal network inserted in series or shunt

with the circuit.

It will be assumed that the Zn impedance

includes a prescribed shunt capacity C as in-

dicated by Fig.' 13.6. Obviously, if C is large

Zn cannot be a large impedance over a broad

frequency band and in accordance with equa-

tion (13-13) the attenuation will be corre-

spondingly small. On the other hand, as C
is made smaller, Zn and the attenuation A
can assume larger and larger values. The theorem described in this section

is concerned with the exact relation among these quantities.

The reason for considering such a problem as this is that we frequently

have occasion to introduce equalizers into /3 circuits of amplifiers in order to

control their gain characteristics. It is shown in a later chapter, however,
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that the amount of feedback which can be secured from the amplifier
depends upon the asymptotic characteristics of the feedback at frequencies
remote from the band and is diminished by anything which introduces
attenuation into the feedback loop in the asymptotic region. Obviously,
the behavior of the equalizer at very high frequencies depends upon the
value assigned to C, and the relation between C and the general level of
attenuation which can be secured from the structure is therefore useful in
determining the extent to which the available feedback is reduced by the

G
introduction of equalization into the circuit.

^
In addition to this particular problem, the analy-

sis can also be applied to a number of parallel

problems in which the function of interest has a
-h

f~p^|"
rn form similar to (13-13). An example is furnished

H| z |~J
1
c p by the introduction of local feedback through the

1 n__T use °f an impedance between cathode and ground
I

"'
1 in one tube as shown by Fig. 13.7. The equation

Fig. 13.7 for the gain of such a circuit, neglecting grid-

cathode and plate-cathode admittances in com-
parison with the other admittances of the circuit, is given by

"
=
iT(br <13

-14 >

The reduction in gain produced by the local feedback is therefore measured
by 1 + GmZ. This is evidently the same expression as that in equa-
tion (13-13) if we replace the transconductance Gm by the reciprocal of R .

Since Z will generally be controlled at high frequencies by the parasitic
capacity C in Fig. 13.7, between cathode and ground, the situation is

essentially similar to that discussed for the equalizer.

The relation between the equalizer loss, or the reduction in gain due to
local feedback, and the capacity C can be established by replacing Zn in
(13-13) by its high frequency value 1/iuC. It is easily shown that
log (1 + l/iuCR ) reduces approximately to l/iuCR when « is very large.
We thus have Ax = and Bx = - l/CR . Substitution in (13-6) there-
fore gives

X^ =
^k' (13-15)

As an example, let it be supposed that we wish to apply local feedback to
a tube for which Gm = 4 X lO"3 mhos, and C = 40 prf. The equivalent
R which appears in (13-15) is 1/Gm , or 250 ohms. An easy calculation
shows that the total local feedback obtainable amounts to 1 neper over a
25 mc band or 2 nepers over a 12.5 mc band. Since the integral in (13-15)
run$ to infinite frequency, however, and we evidently cannot reduce A
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abruptly to zero, the feedback available over a definite 12.5 or 25 mc band is

slightly less than these figures would indicate.*

13.6. Regeneration and Degeneration in a General Feedback Circuit

The analysis just concluded can also be used to derive a second result

which is at least curious, although it may not be of great practical impor-

tance. We are accustomed to thinking of feedback amplifiers as being either

regenerative, in which case the external gain is increased at the cost of an

increase in the effects of tube variations, or degenerative, in which case the

gain is reduced in exchange for a corresponding improvement in the effects

of tube variations. It is apparent, however, that the expression

log (1 + GmZ), which we have just studied, is merely a particularly simple

form to which the general expression log (1 — jwjS) reduces for the special

case of a single tube feedback amplifier. Equation (13-15) therefore

measures the total reduction in gain or degeneration for such a system. In

a similar fashion we might replace the 9 in (13-13) by log (1 — /iff) for a

general amplifier and proceed with the analysis in the same way as before.

In the general case only one difference would appear. Whereas in the

single tube feedback amplifier the feedback ai|3 varies, in general, inversely

as the first power of the frequency at high frequencies, in a general multitube

amplifier, the feedback would vanish as some higher power of frequency.

If the feedback drops off as a higher power than the first, however, the con-

tribution of the integral around the infinite semicircle is evidently zero and
the right-hand side of equation (13-15) therefore vanishes. This can be
formulated as the

Theorem: In a single loop feedback amplifier of more than one stage

the average regeneration or degeneration over the complete

frequency spectrum is zero.

In a typical amplifier, in other words, the increase in gain at high fre-

quencies due to the fact that
| 1 — ai/3 |

is less than one just balances the

* This example is taken from the design of a repeater amplifier used some years

ago in an experimental system for long distance broad-band transmission over coaxial

lines. The system was intended to transmit carrier telephone messages over a 2 mc
band; a modified form of the system with a somewhat extended band to accommodate
television as well as telephone signals is described by Strieby and Wentz, "Television

Transmission over Wire Lines," B.S.T.J., Jan., 1941. The 40 fifif cathode-ground

capacity mentioned in the text is much greater than the physical capacity in the

actual amplifier, but the grid-cathode and plate-cathode capacities lead to an effective

C of about this magnitude. The reason for maintaining the local feedback over a

band as great as 12 to 25 mc is that otherwise the stability of the system is jeopardized

by a decrease in the gain of the tube to which the local feedback is applied, even if the

characteristics around the main loop are apparently absolutely stable. The design is

described in more detail in a later chapter.
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reduction in gain due to feedback in and near the useful band. It must be
remembered that the comparison takes place on an arithmetic frequency-
scale and the high frequency region over which a perceptible increase in gain
takes place may be very broad.

13.7. Phase or Reactance Integral

Equation (13-6) gives the integral of the real component of a network
function over the real frequency axis in terms of the behavior of the imag-
inary component at infinite frequency. A second contour integral theorem
gives an analogous relation between the integral of the imaginary compo-
nent of the function over the real frequency axis and the behavior of the real
component at extreme frequencies.

In developing (13-6) the integrand was made to vary as oT1 near
infinity, so that the integration around the large semicircle could be per-
formed, by subtracting Ax from 6. We can also secure a manageable inte-
grand at high frequencies by dividing 6 by oi. This leads to

f- d" = 0. (13-16)

When the path is made very large, the integral around the complete loop
can again be broken up into an integration along the real frequency axis

and an integration around an infinite semicircle. It is necessary, however,
also to include the contribution of a very small indentation around the
origin to take account of the fact that the integrand has a pole at this point.
Equation (13-16) thus becomes

f - do, + £ - do, + f - do, = 0, (13-17)
iZ-iodl J 01 J 01

where the third integral represents the very small semicircle near the
origin.

In evaluating the first term of (13-17) we find we need again to consider
only the component having even symmetry over the positive and negative
frequency ranges. In this instance, however, this component is iB/o>.

The integrands in the remaining terms can be written as Ax/o, and J /oi,

since the contributions of the higher order terms in (13-2) disappear when
the path is pushed to the limiting case. This gives

2i f - do, + f ^= do, + f'^ do, = 0. (13-18)
«/o 01 J 01 if 01

The second and third integrals of (13-18) can be evaluated by means of
equation (8-4) of Chapter VIII. They are equal to -rM„ and iriA

,

respectively. The complete expression is therefore

Bdu =~(JX - JQ) t (13-19)
/"
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where du = ^(log oo) has been written for da/os. This equation is evi-

dently exactly analogous to the integral for the real component given by

(13-6) except for the fact that the integration is taken on a logarithmic

frequency scale and the right-hand side involves the difference between the

values of the real component at zero and infinite frequency. The reason

for this latter change is physically evident from the fact that the absolute

level of resistance or attenuation in a circuit can always be varied at will

without affecting the rest of the circuit characteristics.

Equation (13—19) states, in effect, that the total area under the imaginary

component plotted on a logarithmic frequency scale depends only upon the

difference between the values assumed by the real component at zero and

infinite frequency, and not upon the way in which the real component varies

between these limits. This is illustrated by Fig. 13.8. If the change in the

real component is concentrated in a narrow portion of the frequency spec-

><f
4»

-y"

*0
^/* L

"«—

'

/m

U= loq /
Us log/

Fig. 13.8

trum the imaginary characteristic rises to a sharp peak, while if the change

in the real component is more gradual the imaginary characteristic is broad

and flat. For a given total change in the real characteristic, however, the

area under the imaginary characteristic is always the same. IfA and B are

attenuation and phase the units in which (13-19) is expressed are nepers

and radians and it is easily seen that the phase area is equal to 90° multi-

plied by a frequency interval equal to the change in loss expressed as a

current ratio. For example, a low-pass filter having 40 db loss at high

frequencies* has an accompanying phase area equal to 90° over a frequency

range of 100 : 1.

* Taken literally, Ax in (13-19) represents the loss at infinite frequency, where

the attenuation of any actual low-pass filter is infinite because of reflection effects.

It is obvious, however, that ifAx is taken as the loss at some fairly representative high

frequency the equation should give an approximately correct value for the phase area

at lower frequencies. The difficulty can also be avoided by allowing B to stand for the

transfer constant rather than the insertion loss of the filter.



288 NETWORK ANALYSIS Chap. 13

In order to exemplify the relation in detail, we may consider again the
simple networks shown by Fig. 13.2, allowing A and B to represent resist-
ance and reactance, respectively. If we choose the structure of Fig. 13.2a,
we have A = R , Ax = 0, and B = -(coC^)/(l + o>

2C2
R%). Equa-

tion (13-19) therefore becomes

CRl
I 1 + o>

2C2R%
dca --7?

2 °' (13-20)

which can easily be checked by ordinary integration. The analogous expres-

sion for the structure of Fig. 13.2^ is

(L - R2
0) - a2L2C

,

u=log&)
I" (1 - JLC? + (co/2 C) 2

(13-21)2^o-

This can also be confirmed by ordinary

integration, although the algebra is

somewhat more difficult. The equality

of reactance areas for these networks
for a specified value of R is illus-

trated by Fig. 13.9, where the curves

represent the reactance characteristics

pIG . i3.9
corresponding to the resistance charac-

teristics of Fig. 13.3. The reactance
corresponding to Curve I' in Fig. 13.3 has been divided by two in order
to permit all the characteristics to correspond to the same value of R .

13.8. Applications of Phase Area Law in Amplifier Design

In amplifier design, equation (13-19) can be used either in planning the
general form of an overall loop cut-off characteristic or in making minor
adjustments in a design which is nearly satisfactory. As an example of the
first application, let it be supposed that we are dealing with an equivalent
low-pass amplifier, as described in Chapter X, and let = log T, where
T represents the return ratio for one of the tubes and is the same as —«8
for the usual single loop amplifier. Obviously, A in (13-19) represents the
effective feedback in the useful band* in nepers. Above the useful band rf3
must decrease until it becomes less than unity beyond the amplifier cut-off.

This change in gain can evidently be identified roughly with the quantity
^oo — 4 in (13-19). Associated with it must be a certain definite phase
area. If the amplifier is to be absolutely stable, however, it follows from

* That is, as a negative loss. It must be remembered that /x/3 is stated as a gain
while the A in (13-19) is taken to represent an attenuation.
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the Nyquist plot of Tgiven by Fig. 8.27 of Chapter VIII that the maximum
phase shift at any frequency in the region below the cut-off must be less than
180°. Since the total phase area is fixed, this requirement can be met only
if the area is distributed over a sufficiently wide range. For example, if the
feedback in the useful range is 40 db and the phase shift is nowhere greater
than 180°, equation (13-19) indicates that the phase area must extend over
a frequency range of at least 10 to 1

.

It is fairly evident physically that this must correspond approximately to
the region of decreasing M/3 between the useful band and the cut-off, and the
calculation therefore gives an estimate of the maximum rate at which we
can allow jujS to decrease in the feedback loop design. If the design calls

for a cut-off which is more abrupt than this the peak phase shift will neces-
sarily be more than 180° and the amplifier will be either Nyquist stable or
unstable. A more precise estimate, which allows for the possibility that a
certain amount of the total phase area may be found above or below the
cut-off interval, can be obtained by the methods described later.

As an example of the use of the phase area
law in detailed design work let it be supposed
that as a result of a preliminary design the
Nyquist diagram for T near the cut-off point
takes the form shown by the solid line in Fig.

13.10. The corresponding separate gain and
phase characteristics, plotted against log to,

are shown by the solid lines in Figs. 13.11 and
13.12. The useful band is supposed to be
found at relatively low frequencies, well below the region covered by the
sketches. The amplifier is, of course, unstable. It would become stable,
however, if the characteristics were moved to the positions indicated by
the broken lines in the three figures.*

Fig. 13.10

180'

UMo<) <Q

Fig. 13.11 Fig. 13.12

* The reasons why it is necessary to assume that both the loop gain and loop ph;
characteristics will be changed, and why the new characteristics should be chosen
they are in Figs. 13.11 and 13.12 may be seen in part from the present discussion, but
they will appear more clearly from the analysis in later chapters.

ase

as
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Turning first to the phase characteristic, we notice that the change

decreases the phase area by the amount indicated by the shading in

Fig. 13.12. There must be a corresponding change in A — Ax .* In a

physical circuit, however, we can assume that the characteristics of the

feedback loop at extremely high frequencies are determined by parasitic

elements, such as interstage capacities, and are beyond our control. The
change must therefore affect A rather than Ax . It is indicated by 8A in

Fig. 13.11 on the assumption that since the Nyquist diagram is satisfactory

at lower frequencies the solid and broken line characteristics in Fig. 13.11

will remain parallel below the region covered by the drawing. The phase

area law thus makes it possible to estimate what sacrifice in feedback in the

useful band will be required in order to make the amplifier stable.

With this clue at one's disposal the choice of an

appropriate detailed design should be a relatively

simple matter. Let it be supposed, for example,

that the external gain of the amplifier is satisfac-

tory. Then the feedback in the useful band must

be diminished by changing the m circuit rather

than the /3 circuit. One possibility is afforded by

the addition of a so-called " trap circuit " to one

of the interstages. This is illustrated by Fig.

13.13. The original interstage is shown by Fig.

13.13a and the modified structure including the

trap circuit by Fig. 13.13£. At low frequencies,

where the elements L and R of the trap circuit are

unimportant, the second structure evidently has

the same characteristics as the first except for a constant change in

level equal to log (1 + k). We can therefore determine k, and con-

sequently the trap circuit capacity C in terms of the interstage capacity

C , from the results of the phase area computation. For example,

if the phase area computation indicates that the feedback in the useful

band must be decreased 12 db we must choose k = 3. The trap circuit

inductance L is chosen to resonate with kC at about the frequency indicated

by wo in Fig. 13.12, where the maximum phase change is to be made, and R
is fixed by the phase change required at this point. Since the total phase

area is correct, this should lead to a reasonably satisfactory result without

further trouble in most cases, but minor improvements may be obtainable

by making slight changes in L and R or by introducing part of the damping

* In a physical amplifierA& must be infinite. Since the high frequency characteris-

tics around the loop are not changed, however, it is sufficient, for the purposes of this

calculation, to identify Aao with the attenuation at any frequency beyond the range

of interest.

Fig. 13.13
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in shunt rather than in series with L. No special attention need be paid to

the change in the gain characteristic illustrated by Fig. 13.11, since it

follows automatically if the desired phase characteristic is realized.

The m circuit gain can also be depressed by the introduction of a local

feedback circuit for one of the tubes. This is illustrated by Fig. 13.14.

R is chosen from (13-14) to give the required decrease in gain at low fre-

quencies. The capacity C can at least be estimated from the relation given
in a preceding section, and L and C together form a simple filter which cuts
off in the general neighborhood of w . It is, of course, permissible to
generalize the filter, either by replacing L by an anti-resonant

circuit or by adding more branches to the network, in order
to control the characteristics more carefully. The reader
should also understand that these illustrations are given in

advance of the general design technique described later and
are somewhat subordinate to considerations which have not
yet appeared. For example, if the local feedback struc- FlG 13 14
ture is used, it is necessary to consider whether the circuit

will remain stable if the gain of the tube to which it applies is decreased.

13.9. Other General Relationships

The preceding discussion has emphasized the formulae for the integral
of the real component and for the integral of the imaginary component both
because these are the simplest possible results of the contour integral analy-
sis and because they are of particularly broad application. If we choose
more and more complicated integrands the analysis can also be made to
yield an almost interminable list of other possible formulae. As the for-
mulae become more complicated, however, their application in physical
problems becomes increasingly difficult. The derivation of additional
formulae will therefore not be considered in great detail. The following
headings summarize some of the methods which can be used in extending
the analysis. Typical results to which they lead are given in the list at the
end of the chapter.

1. Formulae Involving Coefficients of Higher Order Terms in Power Series
ford. In deriving (13-6) we began by subtracting the first term in the
series expansion for 6 near infinite frequency. The leading term of the
series which was left thus consisted of the second term of the original
series and the coefficient of this term could be evaluated by means of the
integration around the large semicircle. One possible method of extending
the preceding theorems is obtained by continuing this process. If we sub-
tract successively more and more terms of the original series the successive
coefficients in the expansion can be represented one by one. Equations
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III (a) and IH(£) in the list at the end of the chapter, for example, show

how the coefficients A\ and A[ in the expansions of equations (13-1) and

(13-2) can be represented.

A simple illustration of these formulae can be obtained by returning to

the structures of Fig. 13.2. In Fig. 13.2a we have A[ = l/R C2
, while for

Fig. 13. 2£, A[ is evidently zero. Equation III {a) for the two networks thus

becomes

and

J L (1 - «W + {«RW +
c\

dw - °" (13-23)

The first of these is obvious by inspection. The second can be verified by

writing it as

(1 — x2
) dx

f.
o2,Rlc

= (13-24)

2\2 1

nBW
Jl

(1 - *>)* + -7- X

J*

1
(1 - X2

) ^ p
(l-*2

)

2 +^*2

Jo

(1 - x2 ) dx = Q (13_25)

(1 - x2
)

2 +2\2 1

A/SC

L

where #2 = co
2Z,C If we replace x by 1/x1 in the second integral of (13-25)

it is easily seen that it is exactly the negative of the first integral.

We can express the physical meaning of equations III (a) and III(^)

most easily if we rewrite III (a), for example, in either of the forms

r (
b ~ v) i(a,2) =^ (i3_26)

or

£[£-.- ^-li- (13-27)

Corresponding expressions hold for equation III (3) if w is replaced by 1/w.

In (13-26) and (13-27) BJa is, of course, the imaginary characteristic

which would be realized if the infinite frequency behavior of the structure

were maintained over the complete frequency spectrum. If we suppose

that A[ is zero the equations say that the average value of the actual

imaginary characteristic is, in a certain sense, the same as that of this limit-

ing infinite frequency characteristic. In (13-26), for example, the areas

under the two characteristics are the same when the computation is made

on a frequency squared scale. In (13-27) the average percentage depar-
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ture of one characteristic from the other is zero if we make the computation
on an ordinary arithmetic frequency scale.

Equation (13-27) is illustrated, for the structure of Fig. 13.2, by the
curves shown in Fig. 13.15. In these networks BJu is evidently the
capacity reactance -1/Cco, and B/(BJu) is therefore the ratio of the
actual reactance to the capacity reactance. Curves I and I' of Fig. 13.15
show this ratio for the reactance

characteristics given originally by
Curves I and I' of Fig. 13.9.

Since these curves correspond to

.the structure of Fig. 13.2a, for

which A{/Bx in (13-27) is - 1/R C,

the area under the curves is less

than that under the unit line. On
the other hand, the coefficient A[
is zero for the network of Fig. 13.23

and the average height of the cor-

responding Curves II and II' is

consequently unity. In other

words, the average reactance char-

acteristic obtained from a network
of the type shown by Fig. 13.23

Fig. 13.15

is, in a sense, unaffected by the addition of the elements R and L.

2. Formulae Involving Products of Functions. A second general method
of extending the list of formulae is found if we regard the original function
as the product of two functions 0j = a + tfi and 2 = y + id. Both X

and 2 may themselves be " network functions " or one of them can be
regarded as the particular network characteristic with which we are con-
cerned, while the other is some arbitrary function of frequency introduced
to give some desired special weighting to the various parts of the frequency
spectrum. It is convenient, however, to suppose that in any case the real
component y of 2 vanishes at infinity. If we suppose that X and 2 behave
otherwise at infinity in the way we have previously specified for the original
function 0, this means that all the terms in the product 0i02 , except
«» 8X , vanish at least as rapidly as of"

2 and can be ignored in the integration
over the infinite semicircle. The contribution of the infinite semicircle to
the complete integral is therefore —irax 8x . On the real frequency axis,

on the other hand, we need retain only the even component ay — $8 of the
integrand. The result can therefore be written in the general form

£ 7T
(ay - jSS) du = - ax8 a (13-28)
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The cases in which one of the two functions is chosen arbitrarily to pro-

duce a desired weighting of the results on the real frequency axis are

described later. The simplest example of the use of the formula when 0i

and 62 are both " network functions " is furnished if we assume

0j = 2 = Q — K . This gives equation IV(«) in the list at the end of the

chapter. On a reciprocal frequency scale the relation can also be written

as equation IV (b). The process can of course be continued to include still

higher powers of — X . Equation IV (c), for example, gives the result

when 0i = fl| = (0 — 0«,)
2

. Although none of the resulting formulae are

given in the list, equation (13-28) can evidently be applied also to situa-

tions in which 0i and 2 are network functions derived from different net-

works. For example, if 0i and 62 are the impedances i?i + iXx and

R2 + iX2 of two networks of the general types illustrated by Fig. 13.2,

equation (13-28) evidently yields

f RtR2 dw = f XXX2 da. (13-29)
Jo "o

Instead of considering two quite distinct impedances we may also consider

one impedance, R + iX, and the change in that impedance, AR + iAX,

produced by some physical change in the network. If we assume that the

impedance vanishes at infinity both before and after the change is made the

result is

f RAR do>= f XAX dco. (13-30)

Equations IV(«) and IV (b) are of some special interest as an indication

that, in addition to meeting the general integral conditions set by the

previous equations, the real and imaginary components of must be so

related that they have approximately equal sinuosity. Thus, for example,

equation (13-19) allows us to conclude that a low-pass or high-pass filter

without phase shift cannot be constructed, but it gives no information on

structures having the same attenuation at zero and infinite frequencies.

Equations IV(«) and IV (b), on the other hand, give a much more general

result. This can be formulated as the

Theorem: A network whose reactance or phase characteristic is zero

at all points on the real frequency axis cannot have a resist-

ance or attenuation characteristic which varies in any way

whatsoever with frequency. Conversely, if the resistance

or attenuation characteristic of the network is constant its

reactance or phase characteristic can be only that which

would be obtained from a two-terminal reactive network or a

phase correcting structure.
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3. Formulae Involving Products of Functions with Reversed Symmetry.

As a further extension of this process, we may also suppose that the inte-

grand appears in the general form 0i02/&j. We can suppose that 0i and 2

have the same significance as they had before except that it is no longer

necessary to assume that the real component ofone of the functions vanishes

at infinite frequency. The introduction of the factor l/« has the effect of
changing the symmetry of the real and imaginary components of di62 on the
real frequency axis from even to odd or vice versa. The result which is

secured is thus the complement of equation (13-28) in much the same sense
that (13-19) is the complement of (13-6). We readily find that

f
CO

If

(jS-y + a8) du = - (axyx - a 7o) (13-31)
2

where u = log u.

If we let Oi = 62 = d this expression yields V(a) in the list given at the
end of the chapter. Similarly, the choices 0i = 2 = iu(0 — 0«>) and
h =02 = (l/*«)(0 - 0o) lead to V(b) and V(c), respectively. As in the
previous discussion, the formula can also be applied when 0! and 2 refer to

different networks. For example, the equation corresponding to (13-29) is

/CO
IT

(RiX2 + R2X{) du= - -R01R02 (13-32)

where Roi and R02 are the zero frequency values of the two impedances.
Similarly, we can replace (13-30) by

RAX du= -
J XAR du C13-33)

if we suppose that AR vanishes at both zero and infinite frequency.
The most interesting equation of this group is probably V {d) . This is an

equivalent form of V(«) which is obtained with the help of some of the pre-
ceding equations by means of the transformations

£ JBdu = ^±jh x^x _ Ao)

—r-J_J du -

(13-34)

Equation V(d) follows directly from this if we interpret ^"as {Ax + A )/2.
The equation states in effect that the real and imaginary components of
are orthogonal on a logarithmic frequency scale, if we measure the real
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component from this reference value. A simple example is furnished by the

network of Fig. \3.2a. The reactance characteristic of the structure and its

resistance characteristic, measured from A~,

are shown respectively by the broken and

u= IoqCj s°bd lines in Fig. 13.16. In this instance the— orthogonality of the two components is easily

seen from the fact that they have respectively

odd and even symmetry about the center

Fig. 13.16 point of the characteristic.

4. Formulae Involving A and B at Finite Points or Integrals of A and B
over Finite Ranges. The equations considered thus far fall into two general

classes. In one, which may be illustrated by IV (a), the integrals of two

aspects of the network performance are compared to one another. In the

other, which may be illustrated by 1(a), one such integral is related to a

specific number which is derived from a different aspect of the characteris-

tic. In either case, however, the integrals extend over the complete fre-

quency spectrum, from zero to infinity, and any specific numbers which

may enter the equations are descriptive of the behavior of the structure

only at these extreme points.

The practical utility of the formulae would be greatly extended if these

specifications could be exchanged for specifications on the behavior of the

function at finite points or over finite ranges. For example, I (a) shows

what restrictions must be placed on the real component if the imaginary

component behaves in a prescribed way at infinity. For some design

problems it would be more useful to know how the real component is

restricted if the imaginary component assumes some chosen value at a

prescribed finite point. We might also conceive of using 1(a) the other

way around, to determine how the imaginary component must behave at

infinity if the real component is prescribed over the complete spectrum.

In practical design problems, however, the characteristics are usually pre-

scribed over only a finite range. For such applications a formula which

stated how B must be restricted when the integration of A is carried out

over only a finite interval would evidently be more valuable.

Extensions of these general types can be obtained by modifying the inte-

grands in the earlier formulae appropriately. For example, such quantities

as A , B , Ax and Bx appear in the earlier formulae because they are resi-

dues of the integrand which are evaluated by the integration around either

the large semicircular portion of the complete path or the small indentation

near the origin. Residues which specify A and B at other points can be

obtained if we introduce corresponding poles into the integrand and indent

the contour of integration appropriately. For example, we can secure
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an integrand with poles at +o>o and —uq, to preserve symmetry,

by multiplying the integrands in any of the preceding expressions by

\/(u> — wo) ± l/(<o + o> ). Similarly, we can restrict the range of inte-

gration of either A or B by introducing branch points, which interchange

the real and imaginary components in the complete integrand.

These possibilities are mentioned here largely for the sake of complete-

ness. They grade insensibly into the analysis presented in later chapters

and it will simplify exposition to consider them from the point of view

adopted there. As an example of the introduction of branch points to

generalize such a formula as 1(a), however, we may consider the equation

6 ~ J™ :do> = 0, (13-35)/ Vi - u2
/<4

where it is supposed that the " positive " square root of VI — co
2
/co

2
is

taken. In other words V 1 — co
2/a2 is a positive real quantity for

—wc < w < coc, it is a positive imaginary forw > coc and a negative imagi-

nary for & < — ojc.* This is the same convention as would be used if

VI - co
2
/co

2
. represented a filter image impedance.

It is evident that the integration around the large semicircle in (13-35)

can be ignored. The integral from zero to infinite frequency of the even

component of the integrand must therefore vanish also. In virtue of the

way in which VI — oi
2/u2 behaves, however, (A — Ax)/"v\ — w2/w2 is

an even function of frequency for
|
co

|
< coc and is odd thereafter, while

iB/vl — co
2
/oj

2
is even for

| w |
> coc and is odd for smaller values of o>.

The equation therefore reduces to

f~ A-Ax J r B
I — , = da = — I — . = i

Jo Vl - coVcOo
2 J- Vco2

/^
2 - 1

(13-36)

This expression has been written as equation VI (a) in the list at the end of

the chapter. The corresponding expression in terms of reciprocal fre-

quencies is listed as equation VI {b). In addition to these two, a variety

of other more or less closely related expressions can be obtained by multi-

plying or dividing the original integrands in VI(«) and VI (b) by w or by
applying the same methods to other formulae in the general list.

The physical application of (13-36) can be illustrated by supposing

that we have an amplifier whose characteristics outside the useful band are

* In mathematical terms the branch cut between -\-o>c and — coc must be so chosen

that the integration contour lies on one sheet of the Riemann surface. These are the

appropriate signs for Vl — «2
/a>c if we regard V 1 — oi

2
/^? as positive for positive

real values ofp and move continuously to the real frequency axis without leaving the

sheet.
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satisfactory but which has an unsatisfactory feedback characteristic within

the useful band. For example, the feedback in the useful band may be

irregular, whereas it should be flat, or it may be flat when a varying feed-

back would be more desirable. In order to apply (13-36) we may identify

wc with the edge of the band in the low-pass equivalent design and let A and

B represent respectively the juj8 gain and the up phase shift. The desirable

characteristics outside the band will be retained if we do not change B in

the second integral of (13-36) or Aw which may be taken as the gain at any

representative high frequency point, in the first integral. The equation

thus states that the reproportioning of the feedback in the useful band must

Adw/vl — a>
2/o% unchanged. Since doo/v 1 — w2

/aif = cac d<p,

o

where <p = sin
-1

(ca/wc), this is the same as saying that the area under the A
characteristic when plotted against <p must be kept constant. A similar

rule holds for the maximum gain obtainable from an interstage network

with a varying characteristic. These applications are described in more

detail in later chapters.

13.10. Extensions of Contour Integral Formulae to Other Systems

This discussion has been directed primarily at systems of lumped electri-

cal elements. It is reasonable to suspect from the generality of the contour

integral process, however, that the formulae may apply to other systems as

well. As examples we might take a system including mechanical as well as

electrical elements or a system of distributed electrical elements like a trans-

mission line.

The problem of extending the contour integral formulae to other systems

can be treated very easily if we know the analytic form of the function

which we wish to study. Evidently, it is merely necessary to examine the

function to determine whether it meets the list of conditions given at the

beginning of the chapter. The condition to which special attention must be

paid is the one which limits the behavior of 9 at infinite frequency. In

many of the formulae developed in this chapter it is necessary to assume

that remains finite at infinity. In others, and in all the formulae devel-

oped later, this restriction is not necessary, but it is generally necessary to

assume, at least, that 0/<o vanishes when to is made indefinitely great. The

function 6 will, of course,be finite at infinite frequency if it represents a driv-

ing point impedance or admittance of minimum type in a lumped constant

circuit. If represents a transfer loss and phase this is not necessarily

true, but since the function can increase only logarithmically, at most, the

requirement on 0/co, at least, is always met. If we are dealing with the

ordinary transmission line equation 6 = V (R + io>L)(G + /coC), on the
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other hand, neither requirement is met, since varies near infinity as

«oV LC. The term iuvLC is, of course, a linear phase characteristic corre-

sponding to the electromagnetic delay in the propagation of the wave down
the line and we naturally cannot expect it to be correlated with the attenua-

tion characteristic of the line. In this instance, we can evidently apply the

contour integral formulae merely by subtracting this linear characteristic

from the total phase characteristic.

The difficulty with this attack is, of course, the fact that we frequently do
not have a precise analytic formula for at our disposal and it is exactly in

situations when our knowledge of the behavior of the function is somewhat
incomplete that the additional help afforded by the contour integral rela-

tions is most useful. For example, in a physical transmission line the
" constants " R, L, G, and C usually vary somewhat with frequency because

of skin effects, proximity effects, etc. Although it is possible to establish

formulae which describe the behavior of the line over a broad frequency

range, the discovery of exact formulae which work literally to infinity is

another question.

If we nevertheless postulate that there is an analytic function 0, even
though the form of the function may be unknown, it is possible to conclude,

on general grounds, that it should meet most of the conditions in the list

given previously. For example, the symmetry of the real and imaginary
components of 6, as described in conditions (1) and (2), depends, in a

structure of lumped electrical elements, only upon the fact that the coeffi-

cients in the differential equations for the structure are all real quantities.

Evidently the same considerations should apply to any physical system.
Except for the obvious qualifications required to take care of such functions

as a non-minimum transfer loss and phase, condition (3) is satisfied in the

lumped electrical structure merely because the circuit is stable. The same
general argument can obviously be extended to any system specified by
ordinary linear differential equations analogous to the mesh equations of the
electrical circuit. The argument also applies to systems of distributed

constants if we suppose, as is commonly done, that such a system can be
represented as the limit of a series of lumped constant systems.

As an alternative to the limiting process, we can also study the behavior

of the function on the right half-plane directly. The situation is most
readily expressed by the

Theorem: The input or transfer admittance of a stable physical sys-

tem cannot become indefinitely great in the neighborhood of
any point in the interior of the right half-plane if the corre-

sponding indicial admittance of the system is bounded.
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The theorem is easily established with the help of the familiar equation*

lit) = E(0)A(t) + f A{t - \)E'(\) d\, (13-37)

where E(t) is a voltage applied to some point in the structure at the time

t — 0, E'(t) is the time derivative of E{t), I(t) is the current flowing in

response to E(t), either at the same or at some other point in the circuit,

and A(t) is the indicial admittance between the two points. IfM is the

upper bound of Aif) the equation can be written as

I
Of) I

<
I
EQ \M + M f \E'(\)\d\. (13-38)

But the actual response must also be the sum of a steady state term and a

transient term. If we let E(t) = e
pt

, where p is chosen in the neighbor-

hood in which the steady state response becomes indefinitely great, it is

clear that the limit represented by (13-38) can be made an indefinitely small

fraction of the envelope of the steady state response. Thus the transient

term must approximate the steady state term and must increase exponen-

tially as the steady state term does. In other words, the system is unstable.

If the admittance is a single valued function ofp its only possible singu-

larities in the right half-plane are poles or essential singularities. In either

case, however, these possibilities are ruled out by the theorem just estab-

lished, since the admittance will become indefinitely great at appropriately

chosen points in the neighborhood of the singularity, f We may also

imagine the admittance to be a multiple valued function. If the admit-

tance is to represent something physically determinable, however, the

possibility that it may have branch points in the right half-plane is greatly

restricted by the consideration that we must choose one branch of the func-

tion to represent the " physical " admittance without introducing branch

cuts which will give discontinuities in the physical response characteristic.}

Even without this argument, the previous theorem excludes such possi-

bilities as logarithmic singularities or branch points of the type represented

by (p - k)~1/2
.

* See, for example, Bush's Operational Circuit Analysts, p. 56, or Carson's Electric

Circuit Theory, p. 16.

t See, for example, Goursat-Hedrick, A Course in Mathematical Analysis, Vol. II,

Part I, p. 92.

$ This argument does not apply with equal force to branch points in the left half-

plane because it is not necessarily possible to determine " steady state " characteris-

tics by physical measurements in this region. See, for example, the discussion at the

end of Chapter II.
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An example of branch points which might conceivably exist in the right

half-plane is furnished if we suppose that the admittance includes the
factors (p — «i)

1/2
(p — a2 )

112
. This situation is evidently not ruled out

by the previous theorem. Moreover, if the rest of the function is real for

real values ofp, the complete function will be a pure imaginary on a branch
cut extending from ai to a2 on the real p axis. Thus the physical response,

which is defined as the real component of e
ptY, is zero at the cut and there is

no discontinuity in moving from the top to the bottom halves of the plane.
If ai and a2 are almost equal the two irrational factors can be replaced
approximately by an ordinary zero. Since a zero in the right half-plane
in an ordinary network merely indicates a non-minimum phase shift func-
tion, the existence of this possibility is perhaps not unnatural.

This discussion has been presented for what it may be worth. It is

evidently unwise to dogmatize about so vague and general a problem. The
implication of the discussion, however, is that if a linear physical system is

known to be stable, which is proved by its mere existence, its driving point
and transfer functions must satisfy most of the conditions for the contour
integral analysis. Aside from singularities of the type just described
difficulties are likely to appear principally because of the existence of singu-
larities on the real frequency axis, and especially at infinity. If we are
concerned in particular with transmission, these effects may be looked upon
as departures from a minimum phase condition. They are qualitatively
similar to the departures which one might expect in lumped constant net-
works, although they may differ from possible lumped constant characteris-

tics in detail.

Tabulation of Contour Integral Formulae

Group Integrand Result

I (a) e-ex f (A - Ax ) dw =
2 °°

W e -e
co
2 f -a

- dco —
J CO i*

(0 0-0» / co
—— doi =

J o aco

: 2^x

(J)
e-e

co
2 s;^ -I*

II (a)
e

CO
f^Bdu = Z

(ju .-Jo)
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Tabulation of Contour Integral Formulae {Continued)

Group Integrand Result

III (a) o(d-Ax - i^A f (»B - BJ do,= ^A[

... 9 - A - iB u rx B - B a, 7T

(*) §
/ 7§ du> = ~ o ^i

CO «/o CO Z

IV (a) (0-<U 2

J™ {A-Ax )
2 du,= f B2 dw

co t/ co «/o w

J,
CO -,«>

(A-Ax )
3
da, = 3 (A-AX)B2 do,

O "

V (a) - f ABdu =-(Jl-At)

o,(A - AX)B do, = - - Bl

.. (ft
- e )

2 r» (A-A )B _x 2W —c7~~
Jo ? ~4 5°

fl
2 /•»

(rf) - / {A-J)Bdu =
CO «* — oo

W Vl-co2
/co

2 Jo Vl-co2
/cof J»c \V/co2 -l

e- Ap r°° A-Ap do,__ r"° B da
{l>)

co
2 Vl-co2

/co
2 X Vl-co2

/co
2 "2 Jo Vco2

/co
2-l«2

In II, V(«) and V(d),u = log co.



CHAPTER XIV

Relations Between Real and Imaginary Components of

Network Functions*

14.1. Introduction

The theorems developed in the preceding chapters are concerned with a
number of rather specialized relations between the real and imaginary com-
ponents of network characteristics. The first theorem, for example, allows

us to calculate the resistance or attenuation integral when the behavior of
the corresponding reactance or phase characteristic at infinite frequency-

is known. The second theorem gives a similar relation for the integral of
the imaginary component in terms of the behavior of the real component at

extreme frequencies. Except for rather specific limitations of this sort,

however, the theorems leave the detailed real and imaginary characteristics

still to be determined.

The present chapter continues this discussion to consider the problem of
determining one characteristic completely when the other is known at all

frequencies. The three special problems considered are:

1. The computation of the imaginary characteristic corresponding to a
real characteristic which is prescribed over the complete frequency
spectrum.

2. The computation of the real characteristic corresponding to a pre-
scribed imaginary characteristic.

3. The computation of the remaining portions of the two characteristics

when the real component is prescribed in some parts of the fre-

quency spectrum and the imaginary component is prescribed in the
rest of the spectrum.

* The fact that there must be an analytic connection between the real and imagi-

nary components of a network characteristic has been recognized by a number of
previous writers. The literature of the field includes a considerable list of more or less

specific results, developed usually by Fourier or operational methods. No attempt
is made to review this work here, partly because the variety of attacks which have been

followed are difficult to reduce to a coherent basis and partly because the formulae

are frequently ambiguous, because of the authors' failure to recognize the minimum
phase condition. Special mention should, however, be made of the work of Norbert
Wiener and his students. See, for example, Y. W. Lee's paper in the Journal of
Mathematics and Physics for June 1932, which includes formulae equivalent to a
number of the formulae in the present chapter.

303
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The results are stated here in terms of analytic formulae. Methods of

making approximate computations graphically are considered in the next

chapter.

14.2. Applications of Formulae J"or Relations between Real and Imaginary

Characteristics

Formulae for the relation between the real and imaginary components in

the three situations just listed are developed here principally as tools in

feedback amplifier design. If we are concerned with the overall feedback

loop characteristic, for example, the phase integral theorem of the preced-

ing chapter gives some information on the loop phase characteristic which

we may expect to accompany a loop cut-off characteristic of given general

type. If we are to be certain that the maximum phase shift will not exceed

a safe limit, however, it is necessary to secure much more detailed infor-

mation concerning the relation between the two characteristics. Any one

of the three formulae of the present chapter, but in particular the first and

the third, may be used for this purpose. The formulae may also be used in

detailed amplifier design problems. Examples here are furnished by the

discussion of interstage circuits and input and output circuits given in later

chapters.

The formulae may also be applied to many problems of ordinary net-

work theory. As one illustration, we may consider the design of the Zn
impedance in a constant resistance equalizer of the type described in

Chapter XII. Both the magnitude and phase angle of the Zn impedance

are determined if we specify both the loss and phase shift of the complete

structure. If we deal only with the loss characteristic, however, we can

secure a required attenuation, at any one frequency, from a Zn impedance

of any phase angle provided the magnitude of the impedance is properly

chosen. This appears at first sight to add an element of flexibility to the

problem. In accordance with the results of the present chapter, however,

the phase characteristic of the equalizer would be completely fixed if the

required loss characteristic extended over all frequencies, and it is approxi-

mately fixed throughout the center of any reasonably broad band over

which the loss characteristic is prescribed. In fact, therefore, the Zn
impedance of many equalizers can be fairly accurately determined in both

magnitude and phase angle. In many equalization problems a rough pre-

liminary computation of this sort may serve as a useful guide to design

work. Since a phase angle of more than 90° cannot be provided for the Zn
impedance, the preliminary computation is also useful in determining

whether the prescribed characteristic is physically obtainable with a single

equalizer section.

These uses of the formulae are sufficiently exemplified by the discussion
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in later chapters. The formulae will be illustrated in the present chapter,

consequently, by a study of the general problem of providing a selective

system without phase distortion. Such a system might, of course, be a

linear phase shift low-pass filter. The " system " may, however, be either

more or less complicated than a filter. For example, a very simple system

of this type is represented by an interstage network in a non-feedback video

amplifier. Here the selectivity depends upon the fact that the gain of the

interstage must decrease at high frequencies because of the interstage

capacities. At the other extreme, the system might consist of a length of

coaxial line, complete with repeaters, equalizers, etc., transmitting tele-

vision signals. In this instance, the selectivity of the system may be
ascribed to the increase in the line attenuation at high frequencies and to

the fact that normal repeaters cannot be expected to maintain their gain

at frequencies well above or below the useful band.

In practice, satisfactory characteristics are usually obtained in situations

like these by means of additional phase equalization in the systems. The
formulae developed here, however, refer only to minimum phase shift net-

works. Thus the discussion attempts to show only what types of distor-

tion are to be expected in selective systems not including separate phase
equalization and, very roughly, how the amount of phase equalization

required can be related to the selectivity characteristic.

14.3. Phase Characteristic Corresponding to a Prescribed Attenuation
Characteristic*

The equation relating the imaginary characteristic and real characteris-

tic in general is in effect an extension of equation (13-6) in the preceding
chapter. As it was discussed there, this equation was regarded as a con-
dition imposed on the real characteristic for a prescribed variation of the
imaginary characteristic in the neighborhood of infinity. On the other
hand, we can equally well regard the equation as a method of determining
the behavior of the imaginary component at high frequencies when the real

component is known.

The reason for the appearance of Bx in the final expression is that the
function has a residue of this amount at infinity, which is evaluated by the
integration around the large semicircle. If we can create a corresponding
residue at any finite frequency, it should be equally easy to determine the
corresponding B at that point. Let it be supposed, for example, that we
wish to evaluate B at <oc . It is first necessary to create a pole at this point

* As a matter of simplicity of expression the real and imaginary components of the
function 8 are referred to frequently as " attenuation " and " phase " in the rest of this

chapter. The reader will of course understand, however, that 6 can be any function
meeting the requirements given in the preceding chapter.
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by dividing by w — coc . In order to preserve the symmetry of the expres-

sion a term to give a pole at the complementary point —wc should also be

introduced. If we also suppose that Ac, the value assumed by A at

w = uc, is subtracted from 6* the resulting contour integral can be written

as

<f(
9—^ - e-=-^) d» = 0. (14-1)

J \01 — 0JC 0} + Wc/

It is readily seen that the integrand vanishes at least as rapidly as co~
2

at high frequencies. The contribution of the large semicircular path to

the complete integral can therefore be ignored. The remaining portion of

the path consists of the real frequency axis and two small semicircular

indentations of the type shown by Fig 13.1 in the preceding chapter, which

are taken to avoid the poles at w = iw,,. If the indentations are very

small, 6 on each of them can be assumed to be constant and equal to the

value Ac + iBc or Ac
— iBc , which it assumes at the corresponding point

±«c . This allows (14-1) to be written as

C -T^2 (4-4c + iB) do>+<f /£.(— j—) do,

- (' iBc(— —j—) da = 0, (14-2)
J \oi — wc w + wc/

in which the first term represents the contribution of the real frequency

axis and the second and third terms the contributions around the two small

indentations. In the first integral we can neglect the imaginary com-

* This is done essentially to facilitate exposition. In equation (14-2), for example,

it allows us to avoid consideration of the A terms which would otherwise appear in the

two primed integrals. It also simplifies the consideration of (14-3) since the vanish-

ing ofA — Ac at w = wc prevents the integrand from exhibiting a pole at this point.

These, however, are reasons of convenience rather than necessity. Thus in (14-2)

the contributions of the A terms in the two primed integrals would cancel out anyway,

even if they were left in. The difficulty with (14-3) can be avoided if we notice that

the method of deriving (14-3) leads to the so-called " principal value " of the integral.

In other words, if the small quantity £ represents the radius of the semicircular inden-

tations around ±coc, the actual limits of integration run from zero to wc — s and from

Ue -(. g to infinity. For these limits, it is easily shown by direct integration that the

Ac term contributes nothing to the result when s is made sufficiently small. If the

integrals are defined in terms of their principal values, therefore, this term can be

omitted from (14-3) and all subsequent equations. This will be of some importance

later in the chapter where terms analogous to Ac are occasionally omitted to simplify

the formal expressions.
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ponent from considerations of symmetry In the second integral we can

neglect l/(o> + wc ) in comparison with l/(to — coc ) if we suppose that this

indentation is the one near wc. With the help of (8-4) in Chapter VIII
the integral can be evaluated as iir{iBc ) = — irBc - This is also the value

obtained for the third integral from similar considerations. The result is

therefore

Bc
= —c

f°

' A - Ac
do>. (14-3)

An alternative form of equation (14-3) will be developed in a succeeding
section. The present form is particularly useful in studying the approxi-

mate phase characteristic corresponding to an attenuation characteristic

Fig. 14.1

which is nearly constant in the frequency range near <oc but which may vary
appreciably at more remote frequencies. This is illustrated by Figs. 14.1

and 14.2. In Fig. 14.1, for example, the attenuation characteristic is nearly
constant in the region below some point uh . lfwc is less than <oA , A — A

Fig. 14.2

in (14-3) will be very small throughout this low-frequency region and this

portion of the total integral can be neglected. If we also ignore a>„ in

comparison with co
2

in the integration beyond oih the equation can be
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written as

^'{ur^-^iz).

(14-4)

In other words, the low frequency phase shift is proportional to frequency

and to the area under the high-frequency attenuation characteristic com-

puted on a reciprocal frequency scale. This is illustrated by the broken line

in Fig. 14.1. The result is, in form, the same as equation I {b) of the pre-

ceding chapter, but the method of derivation allows it to be used over a con-

siderably wider range than we would be entitled to assume with the deriva-

tion used there. For further purposes perhaps the most important feature

of the equation is the fact that it states that any high-frequency attenua-

tion characteristic is reflected at low frequencies as a linear phase shift.

This property will be much used in shaping amplifier cut-off characteristics

at high frequencies, since it allows us to adjust the high-frequency charac-

teristics with considerable freedom and still produce corresponding phase

characteristics which cancel one another out over a wide low-frequency

band.

If the attenuation characteristic is of the form shown by Fig. 14.2 we can

proceed in the same way, except that now w2 must be neglected in com-

parison with <4 in the denominator of the integrand in (14-3). The result

is

B, -— \- f' (4 - Jc ) dJ\

,

(14-5)

where ui, as shown in Fig. 14.2, is the point at which the low-frequency

attenuation characteristic begins. Thus the high-frequency phase shift

varies inversely with frequency and is proportional to the negative of the

area under the low-frequency attenuation characteristic computed on an

arithmetic frequency scale. The phase shift is shown by the broken line in

Fig. 14.2.

If the attenuation characteristic is constant in the neighborhood of uc

but varies at both high and low frequencies we can, of course, obtain the

phase shift by adding together the elementary results (14-4) and (14-5).

This gives

Bc = Kxuc - — , (14-6)
03c

where the constants K1 and K2 are written for brevity in place of the terms
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enclosed by the brackets in (14-^1) and (14-5). If the K's are both posi-

tive the net phase characteristic is evidently similar to the reactance charac-

teristic of an ordinary resonant circuit.

The simplest illustrations of these formulae are furnished by niters. Let

it be supposed, for example, that we are dealing with a low-pass filter which
has an average attenuation of about 6 nepers over a frequency range

extending from about 3000 cps to infinity. The low-frequency phase shift

is, from (14-4), given approximately by

[

2 ,,1/6000,- /i\-i

Jo
6
%)_

(14-7)

= 2 X 10~V.

It is to be noticed that this low-frequency delay, equal to about 0.2

millisecond, is a consequence merely of the fact that the high-frequency
selectivity exists, and does not depend upon the particular configuration

adopted for the filter. This is of some interest in connection with the dis-

cussion given near the end of Chapter XI on the problem of designing a
negative all-pass network to cancel a filter phase characteristic.

14.4. Phase Equalization of a Broad-Band System

A more elaborate example of the use of equations (14-4) to (14-6) is fur-

nished by a study of the overall phase characteristic of a complete telephone
system. This was discussed briefly in one of the preceding sections. It is

convenient to suppose that the system under consideration is a broad-band
affair, like a coaxial line with its associated repeaters and equalizers, and
that we are chiefly interested in isolating the factors which determine how
much phase equalization would be required in order to fit the system for the
transmission of television signals.*

If the equalizers and repeater gains are properly adjusted, the net attenu-
ation of the system must be constant and substantially zero over a useful
band extending from cox to w2 . We may, however, expect the attenuation
to rise rapidly below coi and above <o2 due to the failure of the repeaters to

maintain their gains outside the useful band and to the increase in the
line attenuation at high frequencies. The complete attenuation character-
istic thus takes the form shown by the solid line in Fig. 14.3. In a long
system including many repeater points the losses below o>i and above co2

may amount to hundreds or thousands of db.

It will be supposed that the repeaters and equalizers are all of minimum
phase shift type. In accordance with the discussion of the preceding chap-

* For an example of such a system, see the paper by Strieby and Wentz, referred
to in the preceding chapter.
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ter it will be assumed that the line can also be included in a minimum phase

shift analysis if we disregard a linear phase characteristic representing the

infinite frequency behavior of the structure.* Corresponding to the overall

b _ —

Fig. 14.3

attenuation characteristic shown by the solid line in Fig. 14.3, therefore,

the net phase characteristic must take the form defined by equation (14-6).

It is illustrated by the broken line in Fig. 14.3. Upon studying the rela-

tionship expressed by (14-6) we may draw the following conclusions:

1. There is a strong tendency for the attenuation equalization of the line

to produce automatic compensation for its phase characteristic also.

This tendency becomes more pronounced as the band width in octaves

is increased. In other words, equation (14-6) shows that only the

variations in the attenuation characteristic beyond the band con-

tribute to the phase characteristic. If the band is very broad the

regions of increased attenuation are so remote from the center of the

useful band that the net phase characteristic in this range is very

small. If the transmitted band is not over 1 or 2 octaves wide, on the

other hand, the tendency of the system to provide automatic phase

equalization will manifest itself only very imperfectly.

2. To a first approximation, the attenuation characteristic at high fre-

quencies corresponds to a linear phase shift in the useful range. It

is therefore not a factor in producing delay distortion. The low-

frequency attenuation, on the other hand, produces a delay charac-

teristic varying as 1/co
2

. In a broad-band system, therefore, the

low-frequency attenuation characteristic may produce a substan-

tial amount of delay distortion. It follows that if the final phase

* The attenuation characteristic of the line at infinite frequency of course remains.

If the analysis is to apply it is necessary to assume that A/u vanishes at infinity.

This requirement is met by a coaxial line, where the attenuation varies approxi-

mately as y/oi at high frequencies.
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equalization of the system is to be as simple as possible th^ overall

low-frequency attenuation should be substantially less than tlje overall

high-frequency attenuation. Since the line attenuation at frequencies

below the band should be much smaller than it is above the Ipand this

is fortunately not a difficult condition to achieve.

3. Near the edges of the band the approximate formula (14-6) becomes

inaccurate. We note, however, that when coc approaches th£ edge of

the band the integrand of equation (14-3) exceeds the approximate

value assigned to it in equations (14-4), (14-5), and (14-6) through-

out the range of integration. At the edges of the band, therefore, the

net phase characteristic must be greater than the approximate for-

mula indicates. This is illustrated by the dotted lines in Fig. 14.3.

In virtue of this effect, we cannot conclude that the contribution of the

high-frequency attenuation characteristic gives no phase distortion.

It is apparent, however, that the ratio between the approximate value

of the integrand in equations (14-4) to (14-6) and the exact) value at

any prescribed frequency &ic is greater for the part of the to|tal range

of integration which lies near the useful band than it is fqr remote

regions. The high-frequency phase distortion and the increase in the

low-frequency phase distortion will therefore be much reduced if the

loss characteristic can be made to cut off gradually just beyond

the useful band. This problem is discussed at greater length later

in the chapter.

4. The same considerations also lead to a second conclusion. Since the

influence of the attenuation characteristic just beyond the usfeful band

Fig. 14.4

is preponderant, a relatively small negative attenuation in this range

should cancel the phase distortion due to the much larger positive

attenuations which are physically inevitable at more remote fre-

quencies. In other words, a system having a transmission character-

istic of the general type illustrated by Fig. 14.4 should be substantially

phase distortionless. Transmission characteristics of this type are not

generally admissible for a variety of reasons. For example] in a long



312 NETWORK ANALYSIS Chap. 14

system the required net gain at the edges of the band, although it may
be relatively small, is still so great in db that random noise picked up

in this part of the spectrum will eventually overload the repeaters.

The device may, however, be useful in special applications.

14.5. Alternative Formula for the Relation between Loss and Phase

Equation (14—3) is a useful tool in studying the phase characteristic

corresponding to attenuations at relatively remote frequencies. When
the attenuation characteristic varies appreciably in the neighborhood of the

frequency at which the phase is to be determined, however, it is more con-

venient to use an alternative expression. The alternative formula is found

by writing (14—3) on a logarithmic frequency scale. If we set

u = log (to/coc) the expression becomes

2 /*°° A - Ac du

ir Jo o}/wc — <ac/<j) <a

_ 2 f*
A- Ac

7r«/_oo e —

A
'-du. (14-8)= 1 f

IT «/— a

;du

A- Ac

sinh u

This equation is next integrated by parts much as equation 1(a) was

integrated in the preceding chapter to secure equation 1(c). The integra-

tion of (14-8), however, is simplified if we divide the complete range of

integration into separate ranges above and below u = 0. Considering

first the integration over positive values of u, we have

Bx
= - -\ (A - Ac ) log coth fT + - f

d
-f log coth ^ du. (14-9)

ttL IJo irJo au I

If we replace u by — u the integration over negative values of u can be per-

formed in a similar manner* and yields

B2 = -\(A- Ac) log coth^1 +- f
d
-f log coth~ du. (14-10)

ir\_ I J-oo 7r»/_oo«# I

*That is, the integral of 1/sinh u, which was taken as log coth (#/2) for positive

values of u, is taken as log coth (— «/2) when u is negative. The imaginary compo-

nent which would appear if the integral were taken as log coth («/2) for negative

values of u also is not actually of importance, since it cancels out when the limits of

integration are introduced, but its presence complicates the discussion. A some-

what similar point is exemplified by a number of later equations, such as (14-20)

and (14-28).
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Near u = 0, the quantity A - Ac must be approximately proportional

to u while log coth a/2 will vary as -log («/2). At the limit u = 0, there-

fore, the integrated portions of both (14-9) and (14-10) must appear in the

general form u log u, which is known to vanish when u vanishes. At the

other limits, the log coth term approximates 2e~u or 2(coc/co), in equa-

tion (14-9) and 2 e
u
, or 2(u/ue ), in equation (14-10). Since we have

already restricted the permissible loss functions to those for which aA
and A/a vanish at zero and infinite frequency, respectively, this means

that the integrated portions of (14-9) and (14-10) vanish at these limits

also and can be disregarded entirely. When the two equations are added

together to find the complete phase shift, therefore, the result appears as

_ 1 f
°° dA

.

, I

u
I ,

Bc = - I -j- log coth -— du. (14-11)

Although equation (14-11) may appear to be a more complicated expres-

sion than equation (14-3), it can be given a simple physical interpretation.

We observe in the first place that the equation implies broadly that the

phase characteristic is proportional to the derivative of the attenuation

log

5
|<y-wc

|

4

3

J
2 J \
1 y^ \.

C

ft,/o>„.

X 1L.0 10

Fig. 14.5

characteristic on a logarithmic frequency scale. Thus, if we double

dA/du we will also double Bc . Since the integration includes the complete

frequency spectrum, however, the phase characteristic at any point depends

upon the slope of the attenuation characteristic in all parts of the spectrum.
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The relative importance of the slopes in various parts of the spectrum is

given by the term log coth
j u/2 |

which can also be written as

log
|

(co + «„)/(&> — coc ) |. This term thus acts as a weighting factor. It

is plotted in Fig. 14.5.

As we might expect physically, the weighting factor is large in the vicinity

of co = coc . In fact, it becomes logarithmically infinite at this point.

Thus, the derivative of the attenuation characteristic in the neighborhood
of the frequency at which the phase is to be computed is much more
important in determining the result than the attenuation slope at more
remote points. For frequencies much larger than oic the weighting factor is

approximately 2(oc/a)), while at frequencies much smaller than coc it is

approximately 2(co/a>c ). Thus in either case the importance of a remote
attenuation slope is inversely proportional to the interval, expressed as an

arithmetical frequency ratio, between the point at which the slope occurs

and the point at which the phase is to be computed. This is evidently in

agreement with our previous result that attenuations remote from the use-

ful range will produce a phase characteristic which is proportional to fre-

quency if the attenuation is found above the useful band and one which is

inversely proportional to frequency if the attenuation characteristic is

below the useful range.

14.6. Phase Characteristics Corresponding to Illustrative Attenuation Charac-

teristics

With equation (14-11) at hand, it is evidently theoretically possible to

determine the phase characteristic corresponding to any attenuation

characteristic. We need merely differentiate the attenuation characteris-

tic on a logarithmic frequency scale, multiply it by the weighting curve and
integrate the result, using graphical integration if necessary. If a large

number of points of the phase characteristic must be obtained, however,

repeated computations of this sort become quite tedious. An easier

method, which applies in most situations, is described in the next chapter.

For the purposes of the present discussion (14-11) will be illustrated by a

number of very simple attenuation characteristics for which the correspond-

ing phase characteristics can be found analytically.

The simplest possible illustration of (14-11) is obtained if the attenuation

characteristic has a constant slope on a logarithmic frequency scale at all

frequencies. If we set dAjdu = k in (14-11) the equation becomes

k Cx I « I

B = - / log coth J—1 du. (14-12)

The definite integral, however, is known* to be w2
/2. The phase shift is,

* See Bierens de Haan, " Nouvelles Tables D'Intfegrales Definies," Table 256.
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therefore, given by

B = k- (14-13)

10*

-20*-

Fig. 14.6

The phase characteristic is therefore constant and equal to 90° multiplied

by the slope of the attenuation characteristic. These relations are illus-

trated by Fig. 14.6.

For purposes of future dis-

cussion it is desirable to iden-

tify the units in terms ofwhich

the slope k is expressed. Since

u is a natural logarithm and

A is written in nepers, choos-

ing k = 1 is equivalent to

supposing that A will change

by one neper between frequen-

cies which are in the ratio,

e = 2.7183. In other words,

if k = 1, the attenuation, ex-

pressed as a current ratio, is

proportional to the arithmetic

frequency. This will be called a unit slope in future discussion. A unit

slope is evidently the same as a change of 6 db per octave or 20 db per

decade* and may also be referred to in these terms.

As a second example of (14-11),

let it be supposed that the attenua-

tion is everywhere constant except

for a discontinuity at one frequency.

This is illustrated by Curve A of

Fig. 14.7. We can represent the

discontinuity, for the purpose of

applying (14-11), by supposing

that dA/du is very large over a

very narrow range in the neighbor-

hood of the break. Since dA/du
is elsewhere zero, we need carry the integral in (14-1 1 ) only over this narrow
range. Since the weighting function can be regarded as a constant over
this narrow range, however, the integral reduces, in effect, to the integral of

dA/du itself over the region of the break. This is the same as the total

* In accordance with a growing usage, the term decade is used here to mean a
frequency interval of ten to one, or an interval of one cycle of graduations in a plot on
ordinary log paper.
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change in A at the discontinuity. The phase shift at any point is therefore

equal to the product of the change in A and the value of the weighting

function corresponding to the interval between the break frequency and the

frequency at which the phase shift is computed. It can be written as

B = - log
x

CO + 0)

O)

(14-14)

This is

20*

to*

Fig. 14.8

where k is the change in A in nepers and a>o is the break frequency,

illustrated by Curve B in Fig. 14.7 for k = 1.

A third elementary characteristic of special interest is that in which the

jlj r«di»n« attenuation is constant on one side

*s ofa prescribed frequency coo and has

a constant slope thereafter. This is

illustrated by Curve A in Fig. 14.8.

Characteristics of this type are de-

scribed in more detail in the next

chapter and will be used at several

points in laterdiscussions. They will

be called semi-infinite constant slope

characteristics in future analysis.

The computation of the phase characteristic accompanying an attenua-

tion characteristic of this sort is more difficult than it was for either of the

preceding examples. A detailed analysis of the problem is consequently

postponed to the next chapter. The general properties of the phase charac-

teristic can, however, be understood from Curve B of Fig. 14.8. For

example, at a frequency which is well within the sloping part of the attenua-

tion characteristic the phase shift is only slightly less than &(ir/2), where

k is the attenuation slope. It is thus almost equal to the phase shift

which would be obtained with an attenuation characteristic having the

constant slope k at all frequencies. It is apparent from (14-11) that this

must be so, since the only difference between the two situations is the fact

that in the semi-infinite case dA/du = in (14-11) over a range of inte-

gration corresponding to one of the tails of the weighting curve. We may
also observe that the phase shift at <o is just half the asymptotic value

k(ir/2) and that the characteristic exhibits odd symmetry on a logarithmic

frequency scale about this point. The reason for this relationship is again

obvious from (14-11) if it is noticed that the sum of two semi-infinite

characteristics with the same slope k, but running in opposite directions

from a>o, must be equal to a constant slope characteristic. This is shown by

Fig. 14.9, the two semi-infinite characteristics being identified by the solid

and broken lines. The sum of the accompanying phase characteristics

must, of course, be equal to £(x/2), while it is apparent from the symmetry
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of (14-11) for positive and negative values of u that the two characteristics

must be equal at reciprocally related frequencies.

In accordance with the earlier discussion, the low-frequency phase shift

for the semi-infinite characteristic of Fig. 14.8 must be substantially

linear on an arithmetic scale. The exact expression is readily obtained

from (14-4) and appears as

B - k — >

W C0

CO <^. COQ. (14-15)

Thus if we assume k = 1 the linear phase characteristic extrapolated to co

is equal to 2/x radians, or about

36.5°. The actual phase shift at

this point, as determined from the

considerations just discussed, is

x/4 radians, or 45°. It is evident

from these figures that the phase

characteristic is at least roughly

linear over the complete frequency

range below coo. Over most of

the range in fact, the approxi-

mation is even better than these

figures might suggest, since the

departure of the actual phase

characteristic from the linear ap-

proximation occurs chiefly in the

range just below coo. This can be

seen most easily from the equation

dJL _ *

did

0.4 0.6 1

Fig. 14.9

— = — log
COQ + CO

COQ
(14-16)

which is established in the next chapter. This expression is roughly con-

stant over the first two-thirds or three-quarters o{ the band. At higher

frequencies, however, it increases rapidly and approaches infinity logarith-

mically as co approaches co . The very high value of dB/doi near coo is,

of course, a reflection of the artificiality of the postulated attenuation

characteristic and would be avoided if the attenuation varied smoothly

through co .

The elementary characteristics illustrated by Figs. 14.6, 14.7, and 14.8

have been introduced principally for their application in the approximate

study of attenuation-phase relations according to the methods developed

later. They are also of some interest, however, in connection with the

general problem of the phase distortion in selective circuits, which was
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discussed earlier. For example, we can evidently take Fig. 14.7 to repre-

sent an idealized low-pass filter, with infinitely sharp discrimination between
the transmission and attenuation regions. Equation (14-14), then, shows
the phase distortion which such a system must have in the absence of phase
equalization and represents the limit approached by a physical filter as it

becomes more and more sharply discriminating. On the other hand, com-
parison of Figs. 14.7 and 14.8 shows that the phase distortion is due pri-

marily to the presence of a sharp rise in attenuation just beyond the useful

band and not to the fact that the system discriminates, on the whole,

between a wanted and an unwanted range. Thus the phase characteristic

of Fig. 14.8 is reasonably linear over most of the useful band in spite of the

fact that the attenuation eventually rises far beyond the highest value

attained in Fig. 14.7. Moreover, even the residual phase distortion in

Fig. 14.8 can be somewhat reduced if the transition between the wanted

and unwanted regions is made more smoothly. These results are con-

firmed and extended by later examples.

14.7. Relation between Phase and Attenuation Characteristics on an Arithmetic

Frequency Scale

Equation (14-11) has been expressed in terms of the logarithm of fre-

quency since this is usually the scale which lends itself most appropriately

to physical problems. By a direct transformation, however, the equation

can also be expressed in terms of any other frequency variable z. This

process is especially useful if z represents either frequency itself or the recip-

rocal of frequency.

The transformation to the new frequency scale z is facilitated by the

fact that the term (dA/du)du in the integrand of (14-11) becomes simply

(dA/dz)dz, whatever z may be. In order to complete the transformation,

therefore, it is merely necessary to express the weighting function appropri-

ately on the new scale and to change the limits of integration so that they

will continue to embrace the complete positive real frequency axis. Thus,

if z represents a, equation (14-11) is transformed into

B,
+

da, (14-17)

while if Z represents 1/w, the equation becomes

ir Jo
*-- z

i im*
\/a + 1/a

l/» - 1/c.

J (1/a). (14-18)

As an example of these transformations, let it be supposed that the

attenuation characteristic for which a corresponding phase shift is to be

determined is one which has constant slope for a finite interval of an arith-
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metic frequency scale. Such a characteristic is shown by Curve A in

Fig. 14.10 where, for convenience, the slope is supposed to begin at the

origin.* The characteristic is, in a sense, the counterpart of the semi-

infinite slope on the logarithmic frequency scale which was considered

previously. It is important to notice, however, that in contrast to a slope

on a logarithmic frequency scale, the characteristic we are now considering

cannot be regarded as extending over an indefinitely targe interval since

B
(radians)

0.5iCJ,

Fig. 14.10

this would violate the condition that A/o> must vanish at infinite frequency.

Let the slope dA/dw between the origin and the point co be represented

by k. Then since dA/dw = at higher frequencies, equation (14-17) can

be written as

k r
irJ

Bc = - log
W + 0>c

co — oic

do* (14-19)

This is readily evaluated as

koio
Bc = [(*+ 1) log (*+!) + (*- 1) log |*- 1| -2* log*], (14-20)

where * equals uc/oio-

A sketch of the function defined by (14-20) is shown by Curve B in

Fig. 14.10. Its general shape is about what one would expect from (14-11)

if it is recalled that a constant attenuation slope on an arithmetic scale is

equivalent to a slope which gradually decreases toward low frequencies

when the characteristic is plotted on a logarithmic frequency scale.

* Since, by postulate, A is an even function of frequency this means that the curve

must change direction sharply at the origin. The behavior of the phase characteris-

tic at extremely low frequencies is consequently rather peculiar, as inspection of

equation (14-20) or Fig. 14.10 shows. This somewhat unnatural choice of the atten-

uation characteristic can be disregarded here, since its effects disappear in the applica-

tions of the analysis made later in this chapter and in the next chapter.
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14.8. Attenuation Characteristic Corresponding to a Given Phase Characteristic

Thus far in this chapter, the problem under consideration has been that of

determining the phase characteristic corresponding to a given attenuation.

We will now turn to the converse problem of determining the attenuation

when the phase is known. In its general features the solution of this

problem differs from the preceding one in only one important respect.

When the attenuation is prescribed, the corresponding minimum phase is

uniquely determined. Since we can always add or subtract an arbitrary

loss in a physical circuit without affecting its phase characteristic however,

the attenuation corresponding to a given phase can be determined only to

within an arbitrary additive constant. In the equations which follow this

is taken into account by referring the attenuation characteristic to the

attenuation at zero or infinite frequency.

The required formulae can be obtained most simply by replacing 9 by
either iu(d — Ax ) or (0 — A )/iw in all the preceding equations. The
introduction of the factor iu has, as its chief effect, the interchange of the

real and imaginary components at each stage of the analysis. Thus, if we
begin with iw(6 — Ax ), the real component is — coB, and has even sym-
metry, while the imaginary component is ioi(A — Ax ) with odd symmetry.
If we replace A by — coB and B by ia{A — Ax ), therefore, the formulae

which have been used to determine B from A can be applied equally well to

determine A from B. Similarly, the adoption of the function (0 — A )fm
is equivalent to replacing the original A and B by B/u and — {A — A )/u,

respectively. The terms A and Ax are included in the new expressions in

order to prevent them from having a pole at zero or infinite frequency,

which would be contrary to our original assumptions about the function to

be integrated. Their introduction is equivalent to measuring the attenua-

tion from its zero or infinite frequency value, as discussed previously.

With this as a basis, the development of appropriate formulae for the

computation of the loss characteristic corresponding to a given phase

characteristic is a matter of simple substitution. Thus, if we begin with

the function /«(0 — Ax ), equation (14-3) is transformed into

A-^,-- g r"*r
(fl,fV (14-2D

IT Jo CO — U>c

while if we begin with (0 — A )/icc, the result is

Ac — A =
/ o 2— <&>• (14-22)

IT Jo O) — C0C

Similarly, the derivative formula ofequation (14-1 1 ) can be transformed into

Ac ~ A„, —
TUC v —oo

i r dJ^i logcothiA du (14_23)
Wc J _oo au 2
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and

X J _c

d{B/a)
log coth -—— du.

du 2
(14-24)

In physical problems the phase shift is frequently constant over broad

intervals so that the functions Ba> and B/ca will vary respectively as o>

or 1/co. This makes the expression of the formulae in terms of arithmetic

frequency scales or reciprocal frequency scales of greater interest than it is

when the known component was the attenuation. Appropriate formulae

for these scales are easily obtained by modifying equations (14-17) and
(14—18). If we let z represent either w or l/a>, the results of both equations

can be written as

•^00 = ±
ro>c t/o

d(uB)

dz

and

7T Jo

'

d(B/o,)

dz

log
2 + Zc

Z — 2c

log
Z + 2C

2 — Zc

dz

dz

(14-25)

(14-26)

where, in each expression, the negative sign must be chosen ifz = u and the

positive sign if 2 = 1/w.

All these formulae assume that either A or A„ will be finite. This is,

of course, not invariably true. In physical systems, however, the losses at

zero and infinite frequency, if they are not finite, will become infinite

logarithmically. One or the other of the two losses can therefore always be
made finite by the addition of a suitable constant slope characteristic.

The required slope is easily determined from a consideration of the phase
characteristic at the limit.

Elementary illustrations of these transformations are most readily

obtained by returning to the characteristics shown previously in Figs. 14.6,

14.7, 14.8, and 14.10. We can transform any of these figures to give new
relations between A and B by
multiplying or dividing the char- io 1

1

acteristics as they stand by u> and | -l^s—-^
interchanging the real and im-

aginary characteristics. As an

example, consider Fig. 14.7. If

we suppose that we are dealing

with the transformation which re-

places 8 by iu(6 — Ax ), Curve A
in that figure can be identified

with the product of — <a and the

new B, while Curve B is &> times the new
quently divide the original curves by ±co to secure the characteristics for

the new B and the new A — A^ shown by Fig. 14.11.

can conse-
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radians

Conversely, if we suppose that has been replaced by (0 — A )/iw,

Curves A and B in Fig. 14.7 become respectively plots of B/u and
— (A — Ao)/oi for the new function. The new B and the new A — Aq
consequently take the form shown by Fig. 14.12. It will be noticed that

the new B becomes infinite at infinite frequency. This merely illustrates

the fact that the transformations allow us to deal in some instances with a 6

whose behavior at zero or infinite frequency is less restricted than was
previously assumed. In Fig. 14.12, for example, the infinite B at infinite

frequency indicates a departure from a minimum phase shift condition of

the type which was described in

the preceding chapter as appro-

priate for an ordinary transmis-

sion line. We can correct the

phase curve ifwe like by subtract-

ing a linear component or, what
amounts to the same thing, by
displacing the original attenuation

characteristic in Fig. 14.7 to make
the infinite frequency attenuation

zero. This leads to the new
phase curve shown by B' in Fig.

14.12. If the practical problem

is that of constructing the attenu-

ation characteristic corresponding

to a prescribed phase character-

istic which is known to have been derived from a minimum phase shift

structure, questions of this sort naturally cannot arise.

14.9. Linear Phase Shift Systems

As a more elaborate example of the calculation of the attenuation charac-

teristic corresponding to a given phase characteristic we will return again

to the problem of designing a selective system without distortion in the

useful range. Unless the band is infinitely broad, the requirements of zero

attenuation distortion and zero phase distortion cannot be met simultane-

ously with minimum phase shift characteristics. In the earlier treatment

of the problem, it was assumed that the attenuation characteristic over the

band was ideal and we attempted to determine the residual phase distortion

which remained for phase equalization. Here we will assume, on the other

hand, that the minimum phase characteristic is ideal and study the residual

attenuation distortion which is to be expected in consequence.

In order to simplify the problem, the lower cut-off" of the system will be

ignored. It will be supposed, then, that the desired phase characteristic

is that shown in Fig. 14.13. The slope of the phase characteristic is taken

Fig. 14.12
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at the constant value dB/du = a between zero and some point o> , while

above a>o the phase shift B itself is constant and equal to «a>o. The constant

value of B at high frequencies evidently means that the attenuation will

eventually increase logarithmically with frequency, much like the semi-

infinite slope characteristic of Fig. 14.8. As we have already seen, the semi-

infinite characteristic gives a roughly linear phase characteristic at low

frequencies and the approxima-

tion to linearity is improved by

making a more gradual transi- a<
^o

'

tion between the sloping and non-

sloping parts of the attenuation

characteristic. The present cal-

culation thus amounts to a de-

termination of the exact rounding

B

to

Fig. 14.13

B
To

off" in the attenuation characteristic which is required in order to make the

phase characteristic exactly linear.

The preceding general equations give us the option of determining the

attenuation characteristic corresponding to the phase characteristic of

Fig. 14.13 by a study of either Boi or B/u. In the present instance, the

function B/u is obviously the one which it will be convenient to use. A
further simplification is afforded by adoption of an inverse frequency scale.

With this choice B/w is a straight line with the slope ao> from l/o> = to

1/oj = l/a>o and is constant for

higher values. This is indicated

by the solid line in Fig. 14.14.

The analysis of this characteristic

has already been given in effect by

(14-20). In order to adapt the

result in (14-20) to the present

problem it is merely necessary to

replace Bc by (l/o>c)(Ac — A ) and make the changes called for by the

inversion of the frequency scale. This gives

- {A, - A )
=

»/o»

Fig. 14.14

fr(*+iW*+i)+(*-i)iog
ir \_\Uc / \o>c / \«0 /

«0 -2 «0
log—

(14-27)

which can be reduced to

^-^o =- r(l+^)log(l+^ + (l-^log|l-^|l. (14-28)
t L\ wo/ \ wq/ \ o> / | wo I

J
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A sketch of the attenuation characteristic defined by (14-28), with the

constant aoiQ chosen as unity, is shown by Fig. 14.15. The originally

prescribed phase characteristic is indicated by the broken lines. It will be

seen that the characteristics are much like those of a low-pass filter except

for a considerable amount of attenuation distortion near the edge of the

band.

A different form of attenuation characteristic is obtained if we assume
that the phase shift is zero between the origin and o) while it retains its high

Fig. 14.15

frequency value, aoo , beyond this point. This is equivalent to supposing

that the characteristic B/oi drops abruptly to zero at the edge of the band,

as indicated by the broken line in Fig. 14.14. The effect of such an abrupt

break can be obtained by replacing Bc by (l/wc ) {Ac — A ) in the previous

solution (14-14) for the phase characteristic corresponding to a discon-

tinuous attenuation characteristic. The result is

<<>o + «c
{Ac - Jo) = log

O)

and this, when added to equation (14—28), gives

Ac

. aw
AQ = log 1

O>

(14-29)

(14-30)

A sketch of the characteristics corresponding to (14-30) is shown by

Fig. 14.16. It will be seen that with this solution the attenuation charac-

teristic in the band curves downward rather than upward, as it does in

(14-28). This evidently suggests that still better characteristics might be

obtained from a combination of the two solutions. If we multiply (14—28)

by X and (14-30) by 1 — X and add the equations the result is

Ac

aai
Aq =

IT

log

2

1 -^1 2 + X^log
OJ

1+*"
coo

«ol_

(14-31)
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If \ = 0.63 this gives the phase and attenuation characteristics shown by

the solid lines of Fig. 14.17.

The curves of Fig. 14.17 are of interest chiefly as an exemplification of

the argument advanced earlier in connection with Fig. 14.4. It will be

radians

Fig. 14.16

seen that the introduction of a rather narrow region of net gain near the

edge of the useful band allows the system to be designed with substantially

zero attenuation and phase distortion throughout the rest of the useful

band, in spite of a high loss at more remote frequencies. For practical

i, radians

8

Fig. 14.17

purposes the net gain characteristic need not, of course, take exactly the

form assigned to it by this analysis. It might, for example, be distorted

into some such form as that indicated by the dotted lines in Fig. 14.17.

If no net gain can be permitted, however, it is necessary either to accept

attenuation distortion of the general type exemplified by Fig. 14.15 or to

resort to phase equalization.
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The simplest physical illustrations of circuits having the characteristics

shown by Figs. 14.15, 14.16, and 14.17 are obtained if we imagine that we
are attempting to design an interstage network for a non-feedback video

amplifier. The construction of a network to simulate the characteristics

of Fig. 14.16 is particularly easy, since if the multiplier au /ir in (14-30)

equals one-half, the equation will be recognized as the expression for the

absolute value of the image impedance of a mid-shunt terminated low-pass

filter of the constant k type.* Thus the interstage network can be con-

structed as a conventional filter circuit, with the interstage capacity taken

as the final shunt branch.

The characteristics in the other figures can be simulated with impedances

of the same general type, but using somewhat distorted values of the filter

elements. As an example, we may consider the design of an interstage to

represent the characteristics of Fig. 14.15. At high frequencies the net-

work must reduce physically to the interstage capacity, so that its loss will

be given by log coC , where C represents the capacity. We see without

difficulty, however, that when co is large the attenuation in (14-28) is

approximately (2tfco A) log u/W We must consequently have a = x/2co .

With this value at hand it is a simple matter to compute, from Fig. 14.15,

the impedance which the interstage network, less the capacity, must have.

The result is shown by Fig. 14.18. The impedance is very nearly equal to a

mid-series filter image impedance of constant k type plus an added induct-

ance. If this form of representation is adopted the complete interstage

* This is a reference to standard filter theory as developed largely by O. J. Zobel

(B.S.T.J., Jan. 1923, and later papers). Filter image impedances, and filter-like

networks in general, appear frequently in the circuits used for illustrative purposes

from this point on, and it will be necessary to suppose that the reader has at least a

rough acquaintance with the filter field. Of a rather extensive list of possible ref-

erences, Terman's " Radio Engineer's Handbook," pp. 226-244, may be mentioned

for a good brief, treatment, while Guillemin's " Communication Networks," Vol. II,

gives a more substantial discussion. If either reference is consulted, the reader's

attention is directed particularly to the sections on lattice filters. They contain

general analytic formulae for available filter image impedances of the types used here.

Although these image impedance formulae are developed only for lattice structures,

they can also be realized in sufficiently elaborate ladder circuits, as the references

given later show.

On the particular problem of designing a finite network to furnish a close approxi-

mation to a theoretical filter image impedance, the best references are perhaps Zobel's

paper in the Bell System Technical Journal for April, 1931, and the writer's U. S.

Patent No. 2,249,415. In addition, a number of specific designs will be given in

Chapter XVII. In view of the existence of this material, it will hereafter be assumed

that any given illustrative design has been finished if it can be constructed by using

filter image impedances as elements.
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takes the form shown by Fig. 14.19. Its phase and attenuation characteris-

tics are shown by Fig. 14.20. The solid and broken lines represent, respec-

ohms
12l

10

W*i.
1.0

Fig. 14.18

23

3.1

Wf^
1

Fig. 14.19

tively, the attenuation and phase characteristics originally specified in

Fig. 14.15, but with each characteristic multiplied by 7r/2 to fit the value

Fig. 14.20

of ao> adopted in this illustration. The crosses represent the characteristics

actually obtained from the structure of Fig. 14.19.
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14.10. A and B Prescribed in Different Frequency Ranges

The third general problem considered in this chapter is that of deter-

mining a complete impedance or transmission characteristic when the real

component is specified in certain frequency ranges and the imaginary com-
ponent in the rest of the spectrum. Let it be supposed, for example, that

the attenuation is known at frequencies below co and the phase shift in the

range above oiq. The problem to be solved, then, is that of completing the

characteristic by calculating the phase in the range below oi and the attenu-

ation above this point.

In each of the preceding theorems, the known component has been an

even function of frequency and the component to be evaluated an odd
function. Thus, in the first theorem, the attenuation, which has even

symmetry, was supposed to be known and the phase was determined from

it. In the second theorem, the roles of the two components were reversed

by multiplying or dividing the original d by iu.

The same procedure can be adopted for the present problem, except that

the function by which 6 is multiplied or divided isVI — oi
2
/Jo rather than

iu. The properties of the functionVT — o>
2
Ao

2 when the Riemann surface

on which the square root is defined is chosen appropriately were described

in the preceding chapter. It will be recalled that between o> and — o> the
" positive " square root is a positive real quantity and has even symmetry.

In this frequency region, therefore, the introduction of the new function

does not disturb the original even or odd symmetry of A and B. Above

o>o, on the other hand, the positive square root ofVI — a>
2
/c»o is a positive

imaginary while below — coo it is a negative imaginary. In these ranges,

therefore, the function has odd symmetry, which cancels the odd symmetry
of B. Thus in each part of the spectrum the portion of the integrand

which has even symmetry, and is consequently retained in the final inte-

gration, depends upon the component of which is specified there.

This procedure can be made more definite if we write the ratio* of

6 to Vl - co
2
/coo as

e A
,

. B

Vl - a,
2
/*

2
, Vl - w2/u% Vi - to

2
/*

2
,

(14-32)

B . A
V<o2

/w
2 - 1 VoVo,2

,
- 1

* The product is not chosen in this situation since at high frequencies it reduces to

io>(Ax /o} ), with a pole at infinity. The effect of this pole could easily be discounted

ifAx were known, but since the high frequency behavior ofA is one of the functions

which the analysis seeks to determine, the presence of the pole introduces a compli-

cating feature which it is desirable to avoid.
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where all the square roots on the right-hand side are positive real quantities.

Any of the formulae developed previously can be applied to the present

situation if we replace the original A and B, respectively, by the real and

imaginary components of the expression given by (14-32). If we make

these substitutions in (14-3), for example, the result is

2wr r°" A du2co_r r"

TT Jo VT= «7«g <"
2

(14-33)

+
2ac r"

IT t/„„

B dm Bc

v^7 2
WO 1 " Vl - Jjul

-Ac

» «e < Wq

I 03c > C0
,

where the two integrals on the left-hand side replace the single integral in

(14-3)* and the terms on the right-hand side replace the original Bc .

Since we originally assumed that A was known below oj and B above co

the two integrations can be carried out and the remaining portions of both

characteristics evaluated.

It is also possible to make use of the derivative form of relationship as

given by (14-11). If this formula is adopted, however, special precautions

are necessary to take account of the sharp changes in the slope of the real

component of 0/V 1 — co
2
/coq in the neighborhood of o> . For practical

purposes it is probably simplest to flatten off the peak of the real component

curve, as indicated by the broken
Rea, Component

lines in Fig. 14.21, leaving the peak rf e —
itself to be treated by formulae

1 _aJ ' u>0

analogous to (14—33). It may also

be desirable to adjust the constant

level of attenuation to give A and

B the same value at coo, so that the

peak curve will be symmetrical in

the neighborhood of o> - This an-

alysis can be extended in obvious

ways to take account of situations

in which A and B are specified in other frequency ranges. For ex-

ample, if B is specified below co and A above co the function which it is

appropriate to use is ivd/v.1 — w2
/wo and the formula corresponding to

* In equation (14-33) and also in the succeeding equations, the term corresponding

to Ac in equation (14-3) has been omitted for simplicity. As shown in connection

with the discussion of equation (14-1 ), this is permissible provided the integrals are

defined in terms of their " principal values,"

0.4 0.6 1

Fig. 14.21
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(14-33) is

2wc p°"> -coB dw

t Jo Vl - co
2
/wg "2 - <»C

(14-34)

2a>c Px a>A

*" «/ uo Vco2/a>2 -

<&> Wc/fc

1 a>
2 - co

2 Vl - ^/a,2,

«c < Wo

— /—s ;r ' &>c > "OV o)
2
/a;o — 1

Similarly, if A is specified in a band extending from coi to &>2 and B at fre-

quencies outside the band the proper division of the spectrum is obtained

if we begin with the function iu0/(Vl — co
2
/co

2 Vl — <o
2
/a|). This

leads to the formula

^ (i2 + , + r)
=
Vi_^ i _^i

,

w c5c
> 0>2 > £Oc > 6)1

Vcf/co2 - 1 Vl - a,
2
/co!

— «°CAC

0)c > W2-Vw2
/cf - 1 Vo,2/o4 - 1

'

where (14-35)
/*"' -w5 da

Jo
R

.2Vl - W2/Ji Vl - w2/a| a,
2 - «;

T"2 wA da
~ Ju

x Vo,
2/4 - 1 Vl --2/-.2 u? - ,,

2

r
J a.

a-/b>2 «" — "«

5

Vw2
/co

2 - 1 Vco2
/«| - 1 co

2 - co
2

For simple examples of these transformations we can return again to the

elementary characteristics of Fig. 14.7. Thus if we are concerned with the

function 0/Vl — co
2
/o>o and let co represent the point of discontinuity in

Fig. 14.7, Curve A in that figure can be identified with A/vl — u>
2/Jq

below coo and with 5/Vw2
/o>o — 1 above o>o- Similarly, Curve B repre-

sents B/vl — co
2
/co

2
below o) and — y//Vco2/coo — 1 above w . An

easy calculation therefore leads to the curves for the new A and the new B
shown by Fig. 14.22, As in the di$cussion of Fig. 14.12, the new B has a
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pole at infinity. If a constant is subtracted from the original A curve of

Fig. 14.7 to avoid this difficulty the modified characteristics take the form

indicated by the broken line Curves A' and B' of Fig. 14.22. If we begin

db B
10

1 \/
-~A V B

u

/
A

-10
.

radians
2

0.2 0.4 06 1 U/Qa 2 4 b 10 0.1 0.2 04 0.6 1 <"#j 2 4 b 10

Fig. 14.22 Fig. 14.23

with the function iud/V\ — u>
2
/<Jq the analysis is essentially the same,

except that there is no difficulty with the behavior of the new function at

infinity, and leads to the result shown by Fig. 14.23.

14.11. Linear Phase Systems with Prescribed Discrimination

In the earlier discussion of selective systems with linear phase characteris-

tics over a prescribed low frequency range it was assumed that the phase

shift would be constant beyond the prescribed range. This is a convenient

assumption to make for systems like the interstage network of Fig. 14.19

in which it is physically necessary for the attenuation to increase logarith-

mically at high frequencies. As Fig. 14.15 shows, however, it leads to a

rather low discrimination just beyond the band and an unnecessarily high

loss, for most purposes, at more remote frequencies. When the physical

situation permits, it is consequently more desirable to specify in advance

the loss which is to be realized beyond the linear phase shift range. The

discussion of this problem affords a convenient example of the general

methods of analysis described in the preceding section.

It will be assumed that B = aca below o> and that A = K above &>o.

This is illustrated by the solid lines in Fig. 14.24. The remaining portions

of the two characteristics are indicated by the broken lines. Their exact

shape can be found by means of (14-34). Since the solution will evidently

not be affected by the introduction of a constant gain or loss we can assume

for the purpose of studying (14—34) that the constant K which fixes the

high frequency attenuation is zero. This allows us to neglect the second
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integral in (14-34). The equation consequently becomes

2wc

T Jo

UcAc

Vi - „7«8 »2 -<4 Vi~ <£/<$
' C0C < OJQ

cB c

(14-36)

v^-i' Wc > CtfQ.

It is convenient to begin with the solution for Bc . If we split the integral

in (14-36) into two parts the equation appears as

2

Bc =
-2a

Vi l

L/o

da.

Vi - ••2 /.-2
+ J a '

it \o>o L«/o VI — w2
/wo *^° Vl — co

2
/coq ^2

(14-37)

The first integral in this expression can be evaluated immediately as

(7r/2)co - To evaluate the second, let w/«o be replaced by x/Vl + x2 .

This gives

r
a
° <£ du _^ r°°

Jo Vl — CO
2
/con U2 — Uc Jo 1

dx

+ (1 - co
2
/^) X

Vco2
/*

2 - 1 2

Upon substituting in (14-37), we consequently find

\w \ w /
J3 C = flto

I

(14-38)

(14-39)

^ (nepers)
and

H (radians)

aw

This characteristic has already been shown in Fig. 14.24.

The computation of Ac from (14—36) follows similar lines, but it is

necessary to make one modification to take

account of the fact that when coc < wn the in-

* tegrand in (14-36) has a pole in the range of

integration. In accordance with the previous

discussion, the " principal value " of the inte-

gral is to be taken in this situation. This is of

^^ importance principally in evaluating (14-38)."
If we set «o/'"e

— 1 = 1/&
2 the pole in the in-

^/wo tegrand in (14—38) occurs at x = k. In order

to determine the principal value of the in-

tegral we split the total range of integration into two parts, one ex-

tending from zero to k — s and the other extending from k + s to infinity,

where s is some very small quantity. This allows the second integral in

Fig.

i

14.24
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(14-38) to be written as

rx dx_
„k-e dx dxf" dx

Jk+e 1 - *
(14-40)

2
/*

2 ""Jo 1 - x2/k2 ~"Jk+s 1 - *2/*
2

But if we substitute^ = k
2/x it is easily seen that the second integral in the

right-hand side of (14-40) is exactly the negative of the first. In evaluating

Ac from (14-36), therefore, there is no contribution corresponding to

(14-38). This gives Ac as

Ac = K <2C0qf 2
Ol

(14-41)

where the constant loss K, which was ignored in making the analysis, has

been restored to the equation. The results given by (14-39) and (14-41)

can evidently be combined with the original specifications on A and B to

give the complete characteristic by means of the single equation

= A+iB = K-

A large scale plot of this characteris-

tic with K — aoi is shown by Fig.

14.25.

Although the characteristic in Fig.

14.25 approximates a filter more

closely than did the earlier charac-

teristic of Fig. 14.15, it still exhibits

an appreciable rounding in the trans-

mission band. In order to secure a

flatter final characteristic we might

suppose that the system is to be

used for vestigial sideband trans-

mission . This requires only that the

proportions of the characteristic be

aoiQ + iota. (14-42)

.rf (nepers)
and

B (radians)

1.0

db
1.0

Ca'i

Fig. 14.25

Side Band FreQuencvj

-1.0 J Fig. 14.26

so chosen that the carrier will fall at the point having 6 db loss. For

example, if the high frequency loss is 30 db the 6 db point occurs at
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w = 0.6w<). This leads to the net transmission characteristic shown by
Fig. 14.26.

With the proportions chosen for Fig. 14.26 the wanted sideband covers

the first 60 per cent of the linear phase range and the vestigial sideband the

last 40 per cent. Thus the vestigial sideband is two-thirds as great as the

wanted sideband and is rather more than a " vestige." This ratio can be

considerably reduced if we suppose that the actual transmission occurs in a

logarithmically narrow band and that the characteristics of Fig. 14.25

represent merely the low-pass equivalent of such a circuit, in accordance

with the relations described in Chapter X. In this event the region

covered by Fig. 14.25 corresponds to only one-half the total band and the

other half is also available for the

transmission of the wanted side-

band. If it is supposed that the

other half can be flattened out with-

;—

^

- v-t
-

0-Cr -»4o.4» out seriously disturbing the charac-

' wanted sideband
>

ves+iqiai teristics in the vestigial region this
Sideband

leads to an overall characteristic of

the type shown by Fig. 14.27. It

will be seen that the vestigial sideband region is now about one-fourth

as broad as the region occupied by the wanted sideband.

This discussion applies, of course, only to minimum phase shift struc-

tures. We can obviously narrow the vestigial sideband region much fur-

ther by using phase equalization in the final circuit. On the other hand, a

minimum phase shift characteristic of the type shown by Fig. 14.27 can

usually be realized relatively easily by ordinary filters and loss equalizers,

while the addition of any substantial amount of phase equalization adds

considerably to the total complexity of the structure. Thus Fig. 14.27

can be looked upon as at least a rough guide to the proportions which should

be followed when frequency space is not at a premium but when it is

important to use relatively simple network designs. Such a problem might

be encountered, for example, in the short-wave transmission or reception of

television signals. In practice, of course, it may be necessary to assign

the vestigial sideband a frequency region even greater than the 20 per cent

of the total band which is allotted to it in Fig. 14.27. For example, this

estimate depends upon the assumption that 30 db attenuation outside the

band is sufficient and must be increased, as inspection of Fig. 14.25 shows,

if greater discrimination is required. If a linear phase characteristic must

be maintained throughout the region covered by the wanted sideband it is

also impossible to flatten out the characteristics in the lower half of the total

band to the extent suggested by Fig. 14.27, so that the relative breadth of

the vestigial region is still further increased.
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Group

(a)

(*)

to

(d)

Tabulation of Relations Between Real and

Imaginary Components of Network Functions

Formula

Bc = — I ~2 2"w

= - / — log coth L-~ du
7T«/_oo «« ^

_ i r"^,
7rt/ du>

irj d (1/co)

co + coc

co — coc

log

da

1/co + l/coc

1/co — l/coc
<*(!/«)

II (a)

to

2 /•" (co£) - (co£) e— -**» — —
I 2

7T«/o CO —
du

1 r™d{uB). «=
/ -^ log coth^ </«

JTCOc i/o «Z

Z + Zc

Z — Zc
dz

III (a)

(*)

to

2co? f" (B/u) - (5/co),

= _ CO, /•" </ (5/co)

2 2
CO — CO..

t/co

log coth —— du
du 2

= ± coo r™d{B/u)

T Jo dz
log

z + zc

Z — Zc
dz

IV («)

where

2coc

it

2 11/2

1 - -| (M + N) = Be , C0C < coo

"o|

= —Ac, uc > u

M

N

-r
// du

<>2 22 co' — co.Vl - u2/uo

B du
2 ,2

Vco2
/coS - 1 » -

<*>;
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Group Formula

IV 0)
2 1 «?

|

1/3

- 1 - -| (P + Q)=AC, wc <
IT

\
OJ

1

co

= Be , Wc > COq

where
p*°0 — OlB dec

Vl - uVco
2 «* - «?

"at,

CO// iio

Vw2/^ - 1 «a - «Z

V (a) -
7T

2 11/2
|

2 11/2

i--i i - "I (# + S + T) = ^,
wl

I I
<°2

|

Wc < COl

= 5C, C02 > Wc > COl

= -A ;> wc > a>2

where
Jo Vl -

— CoZ? */co

co
2
/co

2 Vl - co
2
/cof. «

a - «^

s= 1 -==
J a x V co

2
/a

co// da)

j

2 - 1 Vl - w2
/a| «2 - <4

«^w2 Vw2
/c

OlB d<j3

>\ - 1 Vco2/a| - 1
»* - col

7T«C

1

2 11/2 1 2

2 1 1 2
«1

| |
C02

1/2

{U+V + W) = B c , COc < COl

= — ^c, co2 > C0C > COl

= — Be, Wc > W2

where
Jo Vl -

w2A dco

co
2
/co

2 Vl - coVcof «* - *»i

JWl Vw2
/a

co
2B dw

?x - 1 Vl - co
2
/co| ^ - CO?

J at VU)2/b.

-co2// cfco

2 - 1 VcoVcof - 1 «" - w*

iVofc.* In \b, \\b, and III£, u = log w/wc . In Wc and IIIc, z may be either

w or 1/co. In either equation the plus sign must be chosen if z = 1/w and

the negative sign if z = «.



CHAPTER XV

Graphical Computation of Relations Between Real and
Imaginary Components of Network Functions

15.1. Introduction

This chapter consists principally of a set of charts which are intended to

facilitate the approximate computation of attenuation-phase relations in

practical cases. The theoretical development consists merely of a state-

ment of the methods by which the charts were prepared and the way they

are to be used.

15.2. Approximation of Actual Characteristics by Straight Lines

The analysis of the preceding chapter is already in a form which makes it

theoretically possible to determine the relationship between the real and
imaginary components of network

functions by graphical methods. If

we make use of equation (14-11), for

example, both the differentiation ofA
and the integration of the product of

dA/du and the weighting function are

operations which can be performed

graphically. When a large number of

points on the imaginary characteristic

are to be determined, however, calculations of this sort become quite

tedious.

As an alternative procedure the present chapter is based upon the

assumption that the real component will be approximated by a series of

straight line segments. This is illustrated by Fig. 15.1. The real charac-

teristic which is approximated in this manner may be either a physical real

component, such as an attenuation or a resistance, or an equivalent charac-

teristic like coB or B/u> derived by the methods described in the preceding

chapter. In choosing the set of straight lines it is ordinarily sufficient to

represent the major trends in the real characteristic correctly. As the dis-

cussion in the preceding chapter in connection with equation (14—11)

indicated, the relation between the real and imaginary components involves

in any case a smoothing out or averaging out of the real characteristic. If

the major trends are correctly represented, therefore, the imaginary

characteristics corresponding to the actual real characteristic and to the

337
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straight line approximation to it should be much more nearly equal than

are the actual and approximate real characteristics themselves.

The advantage of the straight line approximation scheme is, of course,

that it reduces the complete real characteristic to a sum of elementary

characteristics. Since the imaginary component corresponding to each

elementary characteristic can be computed once for all, this reduces the

calculation of the complete imaginary characteristic to the addition of a

number of known curves. In theory, it is sufficient to consider only one

elementary characteristic, the semi-infinite slope. Figure 15.2, for exam-

ple, shows how the straight line characteristic of Fig. 15.1 can be represented

as the sum of three such slopes.

0)i

<»a «J,

Fig. 15.2 Fig. 15.3

This form of representation reduces the work of preparing chart infor-

mation to the simplest possible level, since the complete imaginary charac-

teristic can be built up if we know one primitive curve. It suffers, how-

ever, from the disadvantage that the phase contributions of the individual

slopes may be rather large positive and negative quantities even though the

net phase shift is fairly small. It is consequently necessary to determine

the constituent phase characteristics quite accurately in order to obtain a

reasonably accurate final result. This is particularly likely to be true if

the straight line approximation to the complete real characteristic includes

a number of short and steeply sloping line segments. For practical pur-

poses it is consequently preferable to regard the individual finite line seg-

ments themselves as the elementary characteristics upon which the analy-

sis is based. As an example, Fig. 15.3 shows the representation of the

characteristic of Fig. 15.1 by means of one such segment plus a semi-infinite

slope.

This chapter is devoted principally to large scale plots of the phase

characteristics of semi-infinite slopes and finite line segments. There is, of

course, only one semi-infinite characteristic to consider, but it requires a

series of curves to represent finite segments of different breadths. In addi-

tion to these curves, which assume that the real characteristic was originally

plotted on a logarithmic frequency scale, a few curves of the phase charac-



GRAPHICAL COMPUTATION OF RELATIONS 339

teristics corresponding to straight line segments on an arithmetic frequency

scale are also included.

Although the imaginary characteristic computed by these processes

should match the true imaginary characteristic quite accurately, on the

whole, there will naturally be certain divergences which can be attributed

to the sharp changes in slope in the straight line approximation in compari-

son with the smooth variations of a physical characteristic. The general

situation here can be most conveniently expressed by the

Theorem: If either component of 6 itself or of any derivative of 6 is

discontinuous at some point, the other component of 6 or of

the derivative must be logarithmically infinite at that point.

This relation has already been established for a discontinuity in the real

component of 9 itself by the discussion in connection with Fig. 14.7 of the

preceding chapter. Its extension to the imaginary component or to a

derivative follows readily from the methods of interchanging real and

imaginary components described previously, plus the reflection that and

its derivatives meet the same general analytic specifications.

In the straight line approximation scheme dA/da is discontinuous at the

junctions between the line segments. This gives

rise to situations of the type exemplified by Fig.

15.4. The solid lines indicate the actual charac-

teristics and the broken lines the characteristics

which appear in the approximate analysis. There

is a kink in the broken line phase characteristic at

the point at which the slope of the real characteris-

tic changes, corresponding to the fact that the

slope of the phase characteristic must be infinite p ,, .

there. Since the infinity is only logarithmic, how-

ever, the kink is very small and is scarcely perceptible in practice unless

the characteristics are drawn on an extremely large scale.

15.3. Summary of Charts

Of the charts given at the end of the chapter, the first two give the

imaginary characteristic corresponding to a semi-infinite real characteristic

of unit slope. Chart I gives the imaginary characteristic plotted against

the logarithm of frequency and is the same as Fig. 14.8 of the preceding

chapter drawn on a larger scale. Chart II gives the same information on

an arithmetic frequency scale. It also includes an enlarged version of the

region near coo, where the characteristic is varying most rapidly. The for-

mulae by means of which the characteristic is computed are somewhat
complicated and are described in the next section. The curves cover only
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the region below cc since the rest of the plot can be obtained from the

relations of symmetry described in the earlier discussion of this

characteristic.

Charts III and IV are similar plots of (l/w) log coth
|
u/2 |, where

log coth
|
u/2

|
is the weighting function of equation (14-11) in the

preceding chapter. They satisfy the equation

01 + wn 1
i i " 1

in = - log coth ——L = - log
IT 2 IT OJ — O>o

(15-1)

The curves cover only the range below w since the function has the same
value at a> and at o>o/u>. As shown in connection with Fig. 14.7 of the pre-

ceding chapter, this plot also represents the phase shift corresponding to a

discontinuous attenuation characteristic. To facilitate this application

of the curves the imaginary component has been expressed in terms of

two scales. The first gives the phase shift in radians for a change in

attenuation of 1 neper and the second the phase shift in degrees for an

attenuation change of 1 db. Since there are 180/7T degrees in 1 radian and

1 8.686 db in 1 neper the scales are in*

the ratio 180/8.686tt = 6.6. The reader

I

should note that although the degree and

-£il{~~£r~Zcj
—~— db relationship is applicable to attenua-

tion and phase computations, nepers and

radians are proper theoretical units which

can be used also in other problems. For example, the radian scale gives

the reactance, in ohms, corresponding to a l ohm discontinuity in a resist-

ance characteristic.

The next series of charts gives the imaginary characteristics corresponding

to finite line segments of the type shown earlier by Fig. 15.3. They are

obtained by taking the difference between two semi-infinite characteristics.

The reference frequency coo is supposed to occur at the geometric center of

the segment and the slope extends from o>o/« to awQ. This is illustrated

by the solid line in Fig. 15.5. As in Charts III and IV, two scales for the

imaginary component are shown. The first is in terms of theoretical units.

If, for example, A and B are attenuation and phase, this scale gives the

phase shift in radians when the total attenuation change, 5A in Fig. 15.5,

is 1 neper. The second scale gives the phase shift in degrees when the

attenuation change is 1 db. For other attenuation changes the phase shift

must, of course, be multiplied appropriately. In each chart the curves are

drawn only for the region in which they differ appreciably from the curve

labelled a — 1 .0 on the charts. This limiting curve is the one which would

be obtained if the real characteristic changed discontinuously by one unit at

co , as indicated by the dotted lines in Fig. 15.5 and is the same as the curve
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given in Charts III and IV. Beyond the region covered by the curves,

therefore, the characteristics should be determined from these earlier charts.

Charts X and XI give the imaginary characteristic corresponding to the

real characteristic shown by Fig. 15.6, where.it is supposed that the fre-

quency scale is arithmetic. This is the same characteristic as that shown

by Fig. 14.10 of the preceding chapter, with ku>o = 1, and the equation for

the imaginary component was given then as

B = - [(* + 1) log (* + 1) + - 1) log
|
x - 1 [

- 2m log *], (15-2)
IT

where x = w/o> . The general arrangement of the charts is similar to that

of the earlier plots. The only difference which need be observed is the

fact that since (15-2) has no symmetrical properties it is necessary to

extend the plot to cover the complete frequency range.

The remaining charts give the imaginary characteristic corresponding to

a finite segment of a straight line when the frequency scale is arithmetic.

The curves are intended as alternatives to those given in Charts V to IX,

for situations in which the straight line approximation method is simplified

by the use of an arithmetic rather than a logarithmic frequency scale.

They are, of course, obtained as differences between two characteristics of

the type given by (15-2). The reference frequency co is taken as the

arithmetic center of the segment and the slope is supposed to extend from

(1 — «)coq to (1 + a)cdo. These relations are illustrated by Fig. 15.7. No
curves are drawn for very small values of a since over narrow intervals

straight line segments on arithmetic and logarithmic frequency scales are

indistinguishable.

15.4. Computational Methods for the Semi-Infinite Constant Slope Character-

istic

Most of the computations required to prepare the charts can be based
upon explicit formulae which were given from time to time in the course of

the preceding discussion. The computation of the imaginary component
corresponding to a semi-infinite constant slope, however, requires special

consideration.
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If we suppose that the slope is unity and starts at co the imaginary com-
ponent at any point coc is given by (14-11) of the preceding chapter as

B, = - / log coth~ du, (15-3)

where uc = log «o/W> since in the range below uc the slope is zero and the

integrand in (14-11) vanishes. For purposes of computation (15-3) can

be conveniently rewritten as

1 rXc

Be = - I log
tr J q

1 + x

1 — x
^> OW)

where xc = ajc/«o.

It appears that the result in (15-4) cannot be expressed in closed form,

using elementary functions. We can, however, evaluate Bc by means of a

power series expansion. The procedure is simplified by the symmetry of

Bc about the point coo, as described previously. This allows us to restrict

the computation to values of xc below unity.

A second simplification of the same sort is provided by a relation between

B at a frequency slightly below o) and B at a corresponding frequency near

03 = 0. To develop this relation, set

1 — X 1 Xc /iee\
y =

rr* yc = TT7c

' (15~5)

In terms of the new variable^, (15—4) can be written as

B(xe ) = --f 'logyJQogx). (15-6)

Let this equation be integrated by parts. The result is

B(xc ) - - - [log * log yZZS + ~ T "
log * rf(log y), (15-7)

IT T U x =0

which is easily transformed into

1 1 rv=1
B(xc)

= log xc log jyc / log # d(\ogy). (15-8)
ir irJ y=Ve

The transformation between x and y given by (15-5) is, however, sym-

metrical. In other words, ify is given in terms of x by (15-5), x is given in

terms ofy by the precisely similar expression x = (1 — jy)/(l + y)- Thus,

the integral in (15-8) is in the same form as that in (15-6). The only

difference arises from the fact that the range of integration in (15-6)

extends from zero to xc while in (15-8) it extends from yc to one. We
may, however, write the integral in (15-8) as the difference between an
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integration from zero to one and an integration from zero to yc . The first

of these must represent the imaginary characteristic of a semi-infinite slope

at the point co and is therefore equal to 7r/4 by the discussion in the previ-

ous chapter. The integral from zero to y c is the imaginary characteristic

at the pointjc from (15-6). Equation (15-8) can therefore be written as

B(xc ) + B(y c ) = \ - - log xc logyc (15-9)

provided xc andjy c satisfy equation (15-5).

If xc in (15-5) is near unity, the corresponding yc is very small but it

increases as xc decreases and the two become equal at xe = yc = 0.414.

Thus, the phase characteristic can be computed at all frequencies ifwe know
it only between zero and 0.414. Within this region, we can expect a power
series expansion for B to converge rapidly. A suitable series is obtained by
writing

,
/I + A n f x3 x5 \

nnr-J = 2 (* + T + T +
--r (15"10)

Upon substituting this expression in (15-4) and integrating term by term,

the result is

2 / x3 x5 \
B(xc )

= -[x» + f + f5 +---)- (15-11)

If we use only the first term of (15-11) in conjunction with (15-9), we
can write

2
B(xc ) =-xc , 0<*c < 0.414

(15-12)

•
v !

i i
1 ~ x° 2 1—*,

,=
i
-

;
log ,c log

rT7c
-
;r

-
j

-
7o

, 0.414<*,<1.

The maximum error in B as computed from these expressions is about
2 per cent. If we use the first two terms in (15-11) the result is almost

exact.

The most rapid variation in B occurs in the range near unity. In this

range the behavior of the function is best characterized by its derivative.

Since the derivative of an integral with respect to a variable upper limit is

equal to the integrand, we see readily from (15-4) that

(15-13)

The delay is thus logarithmically infinite at the point at which the slope

starts. This is, of course, a special case of the theorem on the effect of a

dB I dB 1 , 1 +xc

dwB

^ - log
COq OXe TT0}()Xc 1 — xc
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discontinuity in one component, either of or of one of its derivatives,

which was discussed earlier.

15.5. Illustrative Application of the Charts

In order to illustrate the use of the charts and the accuracy which may be

expected from them in a simple case, let it be supposed that we are dealing

with the impedance of the network shown in Fig. 15.8.

Its resistance and reactance characteristics, on a

logarithmic frequency scale, are shown by the broken

lines in Figs. 15.9 and 15.10. A simple straight line

approximation to the resistance is furnished by the

solid line characteristic I in Fig. 15.9. The sloping

segment in this characteristic is centered about the

point co = 1 and its width is denned by the parameter

a = 2.8. The corresponding reactance characteristic can consequently be

read off immediately from the curves in Chart IX. It is shown by the

solid line Curve I in Fig. 15.10.

II 1

Fig. 15.8

0.6 03 1

Fig. 15.9

0.1 0.2 0-4 0.6 0.3 1 &J 2

Fig. 15.10

6 8 10

A more elaborate straight line approximation is furnished by the solid

line characteristic II in Fig. 15.9. Here the central segment and the two
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neighboring segments are all specified by a = 2.0. The corresponding

reactance characteristics are found on Chart V. Allowance must be

made for the facts that the central points of the side segments occur at

w = 0.25 and o = 4.0 and that the three reactance characteristics must be

multiplied respectively by the factors £, f, and ^, to agree with the total

resistance changes represented by the corresponding line segments. This

leads to the constituent reactance characteristics shown by Curves Ila,

1U and lie in Fig. 15.10. Their sum is indicated by the crosses.
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CHAPTER XVI

Application or General Theorems to Input and Output

Circuit Design

16.1. Introduction

Beginning with the present chapter the emphasis in the book will shift

from the development of general design principles to the discussion of

special problems in amplifier circuit design. As a general procedure, each

chapter begins with a discussion of the application of the general methods
developed in preceding chapters to the particular problem in hand and con-

tinues with one or more illustrative designs. The illustrations are based

broadly upon actual past designs, but it has been necessary in many
instances to simplify and modify the design somewhat in order to focus

attention on the particular design procedure under discussion. The state-

ment that any particular illustration represents a network designed for

such-and-such a purpose should therefore not be taken literally.

The present chapter is based upon two theorems, one directed at the

design of an input or output transformer terminated in an open circuit

except for a specified parasitic shunt capacity, and the other directed at

transformers terminated in a finite resistance in addition to the parasitic

capacity. The theorems are illustrated by an input or output circuit

design for one of the coaxial repeaters* and by an antenna coupling circuit

designed for a radio transmitter. The succeeding chapter gives a similar

discussion of the design of interstage networks including a specified shunt

capacity.

Before beginning these two chapters it may be desirable to mention that

the mathematical expressions upon which the discussion depends are not

necessarily restricted in their physical application to the problems of input

and output circuit design and interstage design for which they are nominally

developed. For example, the principal theorem of the present chapter is

one on the reflection coefficient obtainable in a circuit including a pre-

scribed parasitic element. Since expressions having the mathematical

form of a reflection coefficient appear frequently in network analysis this

theorem may be useful in fields having nothing to do with an input or out-

* This is a reference to the transmission system described in Chapter XIII. (See

footnote, p. 285.)

360
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put circuit. It is therefore of some importance to pay attention to the

mathematical form of the functions examined, without regard to the physi-

cal context in which they appear. It may also be observed that since the

analysis always postulates a prescribed parasitic element it is governed

generally by the theorem on the conservation of band width in a circuit

with prescribed parasitic elements which was developed in Chapter X.

This material should be re-read if necessary before the present chapter is

undertaken.

16.2. Input and Output Circuits with Infinite Terminations

The first theorem deals with the maximum performance obtainable from

an amplifier input or output circuit when the amplifier impedance itself is

merely a shunt capacity. Figure 16.1, for example, represents an output

network of an amplifier whose last tube is of screen grid type, so that its

plate resistance can be regarded as substantially infinite in comparison with

the other impedances in the structure. Figure 16.2 shows a corresponding

Fig. 16.1

N

Qr
Z'R*iX

Fig. 16.2

input circuit. In each figure the resistance Rl represents the line and N is

the coupling network. Physically, N will of course be a transformer in

most cases. For the purposes of this discussion, however, it will be sup-

posed that N may include any number of tuning or shaping elements in

addition to the transformer proper. Although Figs. 16.1 and 16.2 are

drawn for non-feedback amplifiers, the conditions of the theorem will fre-

quently be fulfilled also by feedback structures, especially if the feedback is

of series or cathode type. With either of these feedbacks the active imped-

ance of the amplifier proper is very high, as the discussion in Chapter V
pointed out, so that the input or output circuit is effectively open-circuited.

The only difference to be observed is that with feedback the capacity C in

Figs. 16.1 and 16.2, instead of representing the sum of the tube capacity

and the high side capacity of the input or output transformer, reduces to

the transformer capacity alone.*

If the parasitic capacity C were not present we could evidently imagine

that the network N consisted of an ideal transformer of indefinitely high

* See, however, the discussion of" volume performance " given later in the chapter.
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turns ratio. This would allow us to make the current ratio II/I in Fig. 16.1

or the voltage ratio E/El in Fig. 16.2 as large as we pleased over any pre-
scribed band. The capacity, however, limits the response by tending to
short-circuit the transformer when its impedance ratio is made too high.

The theoretical problem is that of determining how large a response can be
obtained over any given band when the best possible network N, including

both a transformer and additional tuning elements, is used.

This problem is easily solved by means of the resistance integral condition

f Rd" = ^' (16-1)

which was originally developed as equation (13-7) of Chapter XIII. For
example, if we let Z = R + iX represent the impedance looking away from
the output tube proper, as indicated by Fig. 16.1, the power delivered by
the tube is

|
I

\

2R. If the network is non-dissipative, which is evidently

the most favorable case, this is the same as the power
| II

\

2Rl which

reaches the line. We therefore have

(16-2)
^ _ A.
/ ->lRL

With the help of the principle of reciprocity it is easily shown that the volt-

age step-up in the input circuit is given by the precisely similar expression

E l~R

e-l =^Yl
- ^

If we let e
a represent either the current ratio

|
Ihi1 1

or the voltage ratio

| E/El
I

and introduce the limitation on R given by (16-1) this leads

immediately to the general formula

As (16^1) is written, the response characteristic extends over the com-

plete frequency spectrum. Since R cannot be negative, however, it is clear

from (16—1) that the maximum response over a finite range will be obtained

if e*
a

is zero outside that range. This allows us to replace the limits of inte-

gration in (16-4) by «i and oi2 , if these quantities represent the edges of the

useful band. If a flat transmission characteristic is demanded, for example,

it leads to

2 (w2 — coiJC/Cx,

where the equality sign holds in the limiting case when the transmission
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outside the useful band is zero. The difference («2 - «i) is evidently an

illustration of the principle of conservation of band width discussed earlier.

We observe that the best obtainable response is the same as that which

would be secured if the network, including C, were replaced by an ideal

transformer whose high side impedance when terminated in the line is

equal to ir/2 times the absolute value of the impedance of C for the given

band width.*

The same formula can evidently be extended to include the case when

the desired response characteristic varies with frequency. Such a problem

might be encountered, for example, if we wished to adjust the input or out-

put circuit to compensate for the characteristics of an associated transmis-

sionline. Letitbesupposedthatthetransmissionaiswrittenasa = a + ai

where ai represents the desired variation in the characteristic and «o

fixes the general level of response. We then readily find

r 1

a < \ log
2CRl

(16-6)

and since «i is known as a function of frequency, <x$ can be computed. The
results in both cases can be summarized as the

Theorem: The average effective impedance ratio, over a given band, of

an input or output circuit terminated in a prescribed capac-

ity C is not greater than that of an ideal transformer whose

high side impedance, when terminated in the line, is x/2 times

the absolute value of the impedance of C for the prescribed

band.

Examples of the use of this theorem in input and output circuit design

are given later.

16.3. Input and Output Circuits for Finite Terminations

The second theorem deals with input and output circuits terminated at

one end by a finite resistance and capacity in parallel. This is illustrated

by Fig. 16.3, the terminating elements being indicated by Rt and C.

A situation of this sort might arise, for example, if the output pentode in

Fig. 16.1 were replaced by a triode having appreciable plate conductance.

Since the networks of Figs. 16.1 and 16.2 are pure reactances and thus

present a very poor impedance to the line, we might also imagine R% to be

* The phrase " the impedance of C for the given band width " is used here and in

later discussion for the quantity l/(co2 — «i)C In accordance with the principle of

conservation of band width, it represents the impedance of C at the edge of the band

in an equivalent low-pass problem.
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R*iX

1
N

an element deliberately added to the circuit to secure an improved amplifier
impedance. An analytic situation which is similar to that presented by
Fig. 16.3 may also appear in other physical contexts. For example, in
certain long-distance telephone systems the power supply to the repeaters
is fed over the line. The shunt inductances and series capacities required

to separate power and signal currents at

each end of the repeater in such a system
play a role which is somewhat analogous

i to that of the shunt capacity in Fig. 16.3.

The theorem to be established depends
upon a study of the reflection coefficient,

p, between Rt and the impedance it faces.

If we write Z = R + iX for the imped-
ance looking away from Ru as indicated by Fig. 16.3, the formula for p
appears as

p= frf
-

(i6-7 >

Although p itself is not of direct interest it is easily related either to the
impedance which the amplifier presents to the line or to the transmission
through the network. For example, if the network is non-dissipative and
Za and Zb represent the impedances looking in each direction from any
junction, as illustrated by Fig. 16.4, it is

easily shown that

Fig. 16.3

Zg ~ Zb

Za + -Zj
(16-8) LfL

N.

Zi
N-> >

Fig. 16.4where Zb is the conjugate of Zb . Thus in

particular, if we take the junction as the line terminals, and assume the line

impedance to be a pure resistance, we can conclude that the absolute value
of the reflection coefficient between amplifier and line will be the same as

the absolute value of p.

The relationship between p and the transmission through the network
can be established by writing the power which a generator E in series

with Ri will deliver to the network as

"""'
(R + %* + # • (16"9)

If the network is non-dissipative this must, of course, also be the power
which flows into the line. The maximum power which the generator E in

series with 2?i can deliver to any external load, however, is E2
/4Ri. If we

let a represent the transmission loss with respect to this optimum, therefore,
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e
(R + Ri)

2 + X2

= 1 - 1 P I
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-
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we have

(16-10)

The limitation on p which follows from the fact that Z must include the

parasitic capacity C can be studied most easily by integrating log (1/p)

around the usual semicircular path. The real component, log
| 1/p |, of

this expression will be recognized as the quantity which is usually spoken

of as the " return loss " (in nepers) in reflection coefficient theory. In

performing the integration, however, allowance must be made for the fact

that log (1/p), or log [(i?i + Z)/ (R\ — Z)], is not necessarily analytic in the

right half-plane. No trouble is to be expected from the factor Rx + Z in

the numerator, since if R\ and Z are both passive impedances their sum
Ri -f- Z must also be a passive impedance and can have neither zeros nor

poles in the right half-plane. This argument, however, does not apply to

the roots of i?i — Z. It is consequently necessary to suppose that, like a

non-minimum transfer impedance, 1/p may have poles in the right half-

plane.

Let the possible poles in the right half-plane be represented by a\ • • • an .

They will be replaced by corresponding poles in the left half-plane if we
multiply 1/p by factors of the form (p — aj)/(p + Uj). This procedure is

essentially similar to the method which was followed in reducing a non-

minimum phase shift transfer impedance to a minimum phase expression.

Since the function is now analytic in the right half-plane it evidently allows

us to write

<£ \r.« P 1 + Z Q> - «l) • • • (/> ~ «n)1 , n ,,,,„
j log l*r^ (p+a^-.-ip+^y^ - <i6

-n >

As in all the previous analysis, only the real component of the integrand

in (16-11) need be considered in evaluating the integral along the real

frequency axis. At real frequencies, however, it is evident that the abso-

lute value of the product of all the factors involving the a's is unity. In

this range the integrand thus reduces effectively to log
| 1/p |.

When a; is very great, on the other hand, Z becomes 1/iwC and
log [(Ri + Z)/(Ri — Z)] is approximately 2/ioiCRi. If we deal with any
pair of factors of the form (p — aj)/(p + «y) we find similarly that their

contribution reduces to —2a
}
-/ico. These are evidently the expressions

which it is appropriate to use in the integration around the large semi-
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circular portion of the contour. The complete integral therefore reduces

to

2/>*|;h+/[c!;-«><]t = - <
16-12)

which is readily transformed into

f.

00

log
T

du = CR~ T^aj' (16~13)

The a's in (16-13) are evidently real or conjugate complex quantities and

in either case they must have positive real components, since they represent

poles of the function (Ri + Z)/{Ri — Z) lying in the right half-plane.

Thus Ylaj must be a positive real quantity and serves to reduce the limit

on the integral in (16-13) which would appear if we considered C and i?i

alone. The reason why such a term must appear in a general analysis is

obvious if it is recalled, from (16-8), that the absolute value of the reflec-

tion coefficient must be the same whether it is measured at the terminals

of Ri or of Rl in Fig. 16.3. An equation of the type given by (16-13) can

be developed equally well for either pair of terminals. If C in Fig. 16.3 is

the controlling capacity in the circuit, however, the quantity which would

correspond to 1/CRi if we conducted the analysis at the line terminals

must, in general, be smaller than l/CRi itself. Thus the line terminal

result, at least, must include a term of the type represented by —£«y if

the equality of the reflection coefficients is to be realized.

In special circumstances the additional term may appear at the i?i

terminals also. Suppose, for example, that the structure of Fig. 16.3

takes the special form shown by Fig. 16.5, in which Ro represents Rl as seen

r
through a transformer. If the elements are

correctly chosen the network represents a simple

filter and we can expect that Ri and Z will be

reasonably well matched, so that log
| 1/p [

will

be correspondingly large, over at least a limited

range. If Ro is made very small, on the other
IO- '

hand, the network approximates an anti-resonant

circuit with small damping and gives a very poor match to Ri at all fre-

quencies. For purposes of practical design, however, such an unnecessary

loss in performance need not be taken seriously, since it is usually a com-

paratively simple matter to secure a design in which no term of the form
~~Haj appears in the equation for the reflection coefficient at the terminals

of the controlling parasitic element. The conditions which the network

must satisfy in order to secure this result are described in a later section.
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Like the corresponding earlier expression (16-4), equation (16-13) as it

stands involves the reflection coefficient over the complete frequency spec-

trum. The response can, however, be restricted to a finite range by notic-

ing that log | 1/p |
can be written as

log = log
Ri+Z
Ri

ii (*i + *)
2 + X* n ,, As

= » l0g
(Rl - Rf + J? (1^14)

It is apparent that the right-hand side of (16-14) will be zero when R =
and will be greater than zero for any positive value of R. As in the preced-

ing theorem, therefore, we can conclude that the maximum value of

log
| 1/p |

in any prescribed interval will be obtained if R vanishes outside

that interval. If ooi and o>2 represent the edges of the prescribed band, this

allows (16-13) to be written as

f
log Jo><-~> (16-15)

where the equality sign obtains in the limiting case when 2Z«y = and R is

negligible below a>i and above &>2-

The simplest example of (16-15) is found, of course, when the reflection

coefficient is constant in the prescribed range. We then have

1

log

which can also be written as

< 7 ^ ' (16-16)

I p I
> e-"/Q (16-17)

where Q represents the reactance-resistance ratio (co2 — ui)CR%. If we
make an obvious extension to include circuits in which

| p | varies with fre-

quency this general result can be summed up as the

Theorem: If a circuit including a final shunt capacity is connected to a

terminating resistance, the average value of the return loss,

in nepers, between the resistance and the circuit impedance

is not greater than ir divided by the reactance-resistance

ratio of the prescribed resistance and capacity in parallel

for the band width over which the average is taken.

A plot of
| p |

against Q, as determined from (16-17) is shown by
Fig. 16.6. The broken line gives, for comparison purposes, the value which

| p ]
would assume if the network N in Fig. 16.3 presented the fixed resist-

ance R\ to the terminating elements i?i and C in parallel. It will be seen

that when Q is less than about 0.7 or 0.8 a suitable design for N allows the

presence of C to be compensated for almost completely and even if Q = 1
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the reflection coefficient can be reduced from 45 per cent to about one-

tenth this amount. For higher Q's, however, the smallest obtainable p

increases rapidly and depends less and less on what can be done in the

design of N.

60%
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Ipl

/

/
/

/

/

t
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1

1

1
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1

1

1
1
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2 3

Fig. 16.6

In virtue of the relation between reflection coefficient and transmission

loss given by (16-10), the same data can also be plotted in terms of the

transmission efficiency of the circuit. This is shown by Fig. 16.7. Since

| p |
appears only as the square in (16-10) the losses are extremely small for

moderate Q's but they increase rapidly as Q grows larger. When Q is

indefinitely great the physical situation is, of course, the same as that

described by the first theorem.

db
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1
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Fig. 16.7

16.4. Implications ofInput and Output Circuit Theoremsfor Practical Design

The two theorems just established have been presented in the first

instance as general theoretical measures of the maximum performance

possibilities of input and output circuits incorporating prescribed parasitic
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elements. It is perhaps equally important to notice, however, that the

theorems also suggest how the general framework of a practical design

approximating the theoretical limits can appropriately be obtained.

These implications do not provide, of themselves, a complete design

technique, but they may be useful as accessories to other methods.

The most obvious suggestion of this type arises from the fact that the

input or output circuit reaches the theoretical limit of performance only

when the resistance component of the impedance seen at the terminal of

the parasitic element is negligibly small at frequencies outside the useful

band. Since the resistance is a measure of the power which can be absorbed

by the network and transmitted to the line this means that the ideal solu-

tion must be obtained from an infinitely selective structure, or, in other

words, a perfect filter. The tuned transformers of ordinary design practice

are, of course, somewhat like simple filters in their properties. The analy-

sis thus suggests that closer approximations to the limiting response, if

required, should be obtainable by adding more elements to bolster up the

selectivity of the circuit. The same considerations also apply to interstage

network design, since it is shown in the next chapter that maximum inter-

stage gain in a prescribed band likewise calls for a negligible resistance

component outside the useful band.

If the circuit is regarded as a filter, it should differ from conventional

filters in one important respect. Since R is a measure of power, the degree

of approximation to the ideal depends upon the loss of the filter expressed

as a power ratio. In these terms an attenuation of the order of IS to 25 db,

which would be regarded as quite low in ordinary filter design, is evidently

substantial. On the other hand, the same considerations point to the

importance of minimizing the breadth of the " transition region " just

beyond the useful band, in which the loss is extremely low. Thus a design

giving a reasonably close approximation to the maximum performance may
have a low general level of attenuation outside the useful band* but its

selectivity should be relatively sharp. Aside from considerations of

simplicity and economy, the amount of filtering which it is desirable to add
is limited by the effects which parasitic dissipation in the circuit elements

may be expected to have. If the approximation to the theoretical limit is

already reasonably good a further increase in the selectivity of the circuit

may evidently lose more by increased dissipative losses than remains to be

gained by a closer approach to the nominally ideal characteristic.

* These remarks apply to regions not more than a moderate distance from the useful

band, where design control is both possible and important. Since the integrations are

carried to infinite frequency the resistance at more remote frequencies must be

indefinitely small if the result is not to be infinite. This, however, is cared for auto-

matically by the parasitic elements in the circuit.
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A question which frequently arises is that of the relation between the
number of elements which are used in the design and the degree of approxi-

mation to the theoretical limit which may be expected as a result. A
rough answer here can be obtained from known relationships in filter theory
between the number of sections in a filter and the amount of discrimination

which can be obtained from it over any given band. The filter relationship

is best expressed by the formula*

« = [10 logio (e
2a

p - 1) - 10 (2V + 1) log10 g - 12], (16-18)

where aa is the minimum attenuation in db over the prescribed attenuation

range, ap measures the allowable distortion in the pass band, ij is the num-
ber of sections in the filter, and q is a parameter measuring the frequency

interval between the prescribed transmission and attenuation ranges. It

is, of course, assumed that for any given rj the individual sections are chosen

to give the maximum possible aa .

Since the input resistance in the attenuating band depends upon the

power flowing through the structure we can represent it approximately by
e~2a". But if ap and q are taken as constants it is clear from (16-18) that

the addition of one unit to t\ will change e~2a« by a constant factor, what-

ever 7j may be. Moreover, in the situation to which the preceding general

theorems on input and output circuits apply, the difference between the

theoretical limiting performance! of the circuit and the actual performance

obtained by any particular network depends upon the resistance outside

the useful band. If we generalize v to represent number of elements

rather than number of sections this evidently allows us to conjecture the

Theorem: If a circuit is limited by a parasitic element in such a way
that maximum performance over a prescribed band can be

obtained only if the real component of a certain impedance

is substantial within the band but vanishes outside it, the

difference between the actual performance and the limiting

performance tends to be reduced by a constant factor each

time an element is added to the circuit, provided the design

is readjusted at each stage to make the maximum possible

use of the elements available.

This proposition is stated as a " theorem " only to make it conspicuous.

Aside from the vagueness of its phraseology, which is intended to cover the

* Darlington, " Synthesis of Reactance 4-Poles," Journal of Mathematics and

Physics, Sept., 1939, p. 332.

"f
The units in which " performance " is to be measured are not stated in this dis-

cussion because the issue is not usually important when the theoretical limit is ap-

proached very closely and in any event the discussion is onlyveryroughly quantitative.
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interstage networks of the next chapter as well as the input and output

circuits now under discussion, the statement can be attacked on the ground

that the reasoning on which it depends is inadequate. For example,

(16-18) is only an approximate relation, p
based on the assumption that aa is reason-

ably large. Moreover, in view of the rela-

tive importance of the region just outside

the band in the total resistance integral, as

discussed earlier, it is naturally to be expected

that additional elements will be used to make
Fl0 16 g

the circuit more sharply selective as well as

to increase the discrimination aa . This does not necessarily upset the con-

clusion expressed by the theorem but it affects the quantitative relation

given by (16-18).

If we nevertheless accept the statement of the theorem at face value it

leads to the relation between performance and number of elements illus-

trated by Fig. 16.8. The curve corresponds to the equation

P = M- ae~hn , (16-19)

where a and b are constants, P is the actual performance,M is the maximum
performance, and n is the number of elements used in the design. A study

of the relation between (16-18) and (16-19) indicates that the constant a

is analogous to ap , in the sense that it can be regarded physically as an

index of the accuracy with which the desired characteristic is to be realized

in the useful band. If we disregard the difficulty that the theoretical

justification for the equation extends at best only to situations in which the

limiting performance is approximated fairly closely, it should be possible to

determine a in most cases by an inspection of the circuit before any shaping

elements are added to the design. If an open-circuited input or output

circuit with flat response is required, for example, we might determine a by

removing N in Figs. 16.1 and 16.2 and computing how large Rl may be

before the distortion over the useful band caused by the parasitic capacity C
exceeds a prescribed limit. The constant b is a scale factor which can best

be determined by comparing the results obtained with two different net-

works. If (16-18) is followed, however, b depends principally upon the

way in which q should be chosen to secure the best compromise between

sharp selectivity and eventual loss, and is independent of the accuracy

requirement ap . Thus b should be roughly the same for all designs of a

given type, without regard to changes in the constant a. If parasitic dissi-

pation is considered it is, of course, necessary in interpreting (16-19) to

assume that M may be somewhat smaller than the theoretical formulae

based on non-dissipative networks indicate.
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16.5. Reconstruction of Imaginary Component as an Aid to Design

The input and output circuit theorems can also be studied from another

point of view, which can be used to aid design work whether the structure

is regarded as a filter or is obtained by straight cut-and-try methods. The
theorems as they stand appear as limitations on the values which the real

component of some function related to the impedance of the structure can

assume in the useful band. If the efficiency of the circuit is to be reason-

ably close to the theoretical limit, however, the real component must be

quite small outside the useful band. We thus know the behavior of the real

component with fair accuracy over the complete spectrum and it is conse-

quently possible to use the methods described in the previous chapter to

estimate what the associated imaginary component will be. This fixes the

complete impedance seen at the terminals of the parasitic element, or, if we
subtract the contribution of this element, the impedance of the network

proper. Once the network impedance is known, however, it is generally an

easy matter to find its structure.

Fig. 16.9

As a simple example, let it be supposed that an open-circuited input

transformer having a flat characteristic equal to the theoretical limit is to be

designed. In terms of the low-pass equivalent, the high side resistance

must be that shown by Fig. 16.9, where unit impedance is taken as the

impedance of the capacity for the prescribed band width. This is a

discontinuous real characteristic for which the corresponding imaginary

characteristic is readily found from the charts in the preceding chapter

and takes the form shown by the curve —X in Fig. 16.9.

If we subtract the parallel impedance of the capacity, the resistance and
reactance of the network proper appear as shown by the curves in

Fig. 16.10. Let the reactance component be ignored for the moment. The
resistance characteristic can be matched with sufficient accuracy for practi-
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0.6 0.8

Fig. 16.10

cal purposes by an ordinary mid-series image impedance of the constant k

type.* In order to illustrate the theoretical basis of the method, however,

we will use the more complicated function

Zj
K \ W \ Wq/

(16-20)

1 - 0.938 2
0>

which matches the required characteristic to the accuracy indicated by the

crosses in Fig. 16.10. The image impedance given by (16-20) can be

obtained from a number of different networks. If we choose in particular

a double m derived section the circuit takes the general form shown by

Fig. 16.11. The parasitic capacity is indicated by C . The box represents

the filter, the elements shown explicitly in the box being the double m de-

rived termination. It is, of course, assumed that the filter is terminated

at the other end in a section which matches the line impedance Rl with

sufficient accuracy over the transmitted band.

* For references on standard filter theory, see the footnote in Chapter XIV, p. 326.
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Fig. 16.12

We now consider the reactance component in Fig. 16.10. It is obvious
that it can be supplied approximately by the simple series inductance L in
Fig. 16.11. An improved match can, however, be obtained by viewing the
problem more generally. Broadly speaking, the analysis begins with an
impedance, that shown by Fig. 16.9, which is appropriately chosen to
include the parallel capacity C and whose real and imaginary parts satisfy

the relations necessary to permit the function as a whole to be represented
by a physical network. It consequently follows that the impedance which
remains when C is removed must also be physically realizable. Any
physically realizable impedance, however, can be regarded as a combination
of a minimum reactance network and a purely reactive structure. If the
resistance component is matched with sufficient accuracy with a minimum

reactance circuit, consequently, we may ex-

pect that it will always be possible to find

a physical pure reactance network to complete
the design.

In the present instance the difficulty with
the reactance match evidently arises from the

fact that the impedance presented by the

filter is not of minimum reactance type. It

has a pole on the real frequency axis both at infinity and at the anti-

resonance of the elements L\ and Ci indicated by the broken lines in

Fig. 16.11. The pole at infinity is not

troublesome, since a series inductance must
be added in any case, but the finite pole is

objectionable and should be removed by R
j

deleting the corresponding elements from the

network.* With this modification, the ad-

dition of the coil L in Fig. 16.11 allows the

required reactance to be matched to the

accuracy indicated by the crosses in Fig. 16.10. The final characteristics,

including the parasitic capacity, are shown by the crosses in Fig. 16.9.

The design can be converted to a practical form with the help of the

familiar representation of a physical transformer shown by Fig. 16.12. The
transformer in the drawing is supposed to be ideal, while the leakage induct-

ance, mutual inductance, and parasitic capacity which would appear in an

* A similar reduction can be made for an image impedance of any complexity.

The method is given in the author's U. S. Patent No. 2,249,415. It is also possible to

remove the pole at infinity. Although this does not improve the reactance match in

this circuit, it might have the practical advantage that it increases the inductance

which can be identified with the leakage inductance of the final transformer.

Fig. 16.13



INPUT AND OUTPUT CIRCUIT DESIGN 375

actual structure are represented respectively by Li, Zm , and C. If the

useful band covers several octaves we can neglect Lm, on the assumption

that Fig. 16.11 refers only to the high frequency behavior of the system.

This evidently leads to the circuit shown by Fig. 16.13, where the box

represents the original filter elements of Fig. 16.11 translated to the low side

of the transformer and La is an inductance which may be added, if neces-

sary, to facilitate the adjustment of the transformer leakage. If the

useful band is relatively narrow, on the other hand, or if the coefficient of

coupling in the transformer is low, it is more satisfactory to regard Fig. 16.1

1

as merely the low-pass equivalent of the actual circuit. In this event, the

coils and condensers in Fig. 16.11 represent, respectively, resonant and

anti-resonant branches in the physical structure. This gives a circuit of

the form shown by Fig. 16.14. The box is now the band-pass equivalent of

Fio. 16.14

the original low-pass filter. La and Ca are adjusting and tuning elements to

convert the leakage to an appropriate resonant circuit. The inductance Lb

is added to produce the correct anti-resonance in the final branch of the

circuit, on the assumption that C rather than Lm is the limiting element in

the branch as it stands. If the mutual inductance is the limiting factor

the added element must, of course, be a capacity.

For practical purposes, the design procedure just described may be

modified in two fairly obvious ways. In the first place, instead of simulat-

ing the resistance component by a filter image im-

pedance, with all the network complexity which

that implies, we may represent it directly by a

suitable resistance-reactance combination. For

example, the resistance characteristic in Fig. 16.10

is very nearly the characteristic we would expect

to secure from a resistance in parallel with a tuned

circuit resonating just outside the band. With the addition of a series in-

ductance to furnish the necessary reactance this leads to the structure

shown by Fig. 16.15. In spite of its simplicity the network gives an ade-

\XiJU-

R+iX

Fig. 16.15
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quate practical match to the final theoretical characteristic, as Fig. 16.16

indicates.

-x

,

01
U/u>,

01-06 1 2.

Fig. 16.16

If a more elaborate resistance characteristic is called for, use may also be

made of the fact that an n element line of alternating series inductances and

shunt capacities terminated in a resistance Rl, as indicated by Fig. 16.17,

has an input resistance given by*

R = Ri

1 + A^2 + A2a>* H + An<,

(16-21)

where the n constants A\- An are related to, and can be used to deter-

mine, the n elements in the network. In this formulation, the ratio of Rl
to the desired R fixes the curve which the polynomial 1 + • • • + Anco

2n

should follow and the design process reduces to the choice of suitable values

for the A's by known methods of polynomial approximation.

We may also modify the procedure by changing our conception of the

final performance which the complete network will exhibit. For example,

with the assumption made thus far,

Li that the gain of the transformer is to be

the maximum theoretically possible,

^ c, *" au the area corresponding to the inte-

gral of the resistance looking into the

high side terminals of the transformer

Fig. 16.17 must be found in the useful band.

This may be spoken of as a " resistance

efficiency " of 100 per cent. On the other hand, if the gain of the trans-

former can be 1 db less than the theoretical limit the resistance efficiency

* H, W. Bode, " A Method of Impedance Correction," B.S.T.J., Oct., 1930,

,rj '»-i



INPUT AND OUTPUT CIRCUIT DESIGN 377

need be only 80 per cent, and 20 per cent of the area can be used to cushion

the sharpness of transition between the transmitted and attenuated regions.

This is illustrated by Fig. 16.18, where the resistance is shown as a single

straight line slope outside the band and the accompanying reactance is

determined by the charts given in the preceding chapter. The resistance

variation outside the band can be chosen in any way which appears realis-

tic, as long as the total area is kept constant, but the simple slope charac-

teristic given in the figure should be adequate for most purposes.

0.8
R -X

-"'
! \

Fig. 16.18

The advantage of making this modification is, of course, that it leads to a

residual impedance, after the parasitic capacity is subtracted, which is more

easily matched by a simple network. The reduction in the sharpness of

selectivity in the circuit as a whole is also helpful in minimizing the effects

of parasitic dissipation in the network. An estimate of the quantitative

importance of these changes can be made from the design examples given

in the next sections.

The design procedure just described for input and output circuits has

been given in great detail, in spite of its elementary nature, because the

possibility of applying the contour integral relations to expedite design

work in similar ways arises in many other network problems. For example,

the interstage network design technique described in the next chapter

follows a similar pattern. We begin with a relationship between the gain

available from the interstage and its parasitic capacity. After the gain

characteristic is thus determined the corresponding phase characteristic is

computed. If the contribution of the parasitic capacity is allowed for,

this fixes the resistance and reactance required from the interstage network

proper. The design problem reduces, in effect, to the discovery of a mini-

mum reactance network which will simulate the required resistance with

sufficient precision. For the reasons described earlier, the additional

reactance required to complete the design can always be obtained from a

physical network and in practice the necessary network is usually so simple

that it can be determined without effort. The same general attack can be

used in many other situations. In principle, the procedure rests merely

upon a recognition of the fact that the contour integral formulae make it
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possible to develop a relatively precise and detailed picture of the properties
which any physical network giving the desired final characteristic must
have. Since design assumptions leading to non-physical networks are thus
eliminated the amount of cut-and-try work in the design is correspondingly

reduced.

16.6. Illustrative Reflection Coefficient Design

An example of the theorem on reflection coefficients is furnished by the
design of a network coupling the output stage of a long wave radio trans-

mitter to its antenna.* If the antenna is identified with the output line

the situation is broadly similar to that shown by Fig. 16.3. In discuss-

ing Fig. 16.3, however, it was assumed that the controlling parasitic

element was the capacity C, at the terminals of the output tube, and
that the reflection coefficient of physical importance was that measured
at the terminals of the line. The situation was analyzed in terms of

the reflection coefficient at the terminals of the output tube, the results

being transferred to the line terminals by making use of the fact that

if the network is non-dissipative the absolute value of the reflection coeffi-

cients at the two points must be the same.

In the present problem all these relations are reversed. Over a narrow

band the capacity of the output stage can be tuned out or otherwise dis-

posed of and is not limiting. On the other hand, the antenna is physically

large to radiate effectively at the long wave lengths employed by the trans-

mitter, and has an enormous capacity to ground. When this is tuned by
suitable inductances in the antenna lead-in and down leads the net antenna

impedance appears approximately as a constant resistance in series with a

rapidly varying resonant circuit whose resonance frequency occurs in the

center of the band to be transmitted.

Conversely, the impedance which is of direct engineering interest is that

which the antenna and coupling network jointly present to the output

tubes. At the 100 kw power level at which the transmitter operates the

* The transmitter under discussion is the original one located at Rocky Point, Long
Island, to furnish commercial telephone service to England. The system is described

in an article "Transatlantic Telephony," by O. B. Blackwell, appearing in the B.S.T.J.

for April, 1928. The transmitter operates on a wave length of about 5000 meters.

The reader will, of course, understand that the high antenna-ground capacity in the

circuit is a consequence of the large antenna structure necessary to support such a

wave length and does not appeal in more modern short-wave systems.

The original antenna coupling network was designed by the author's colleague,

Mr. E. L. Norton. It was redesigned some years ago by Mr. R. B. Blackman to

provide two-channel operation. Only the redesign actually made use of the reflection

coefficient theorem given in the text, but for the sake of illustration the entire design

has been described from the point of view of this theorem.
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current and voltage at the plate terminals are at best extremely high by-

ordinary standards. If the coupling network impedance oscillates between

very large and very small values, so that the tubes work almost into an

open circuit for certain signal frequencies and almost into a short circuit for

others, the danger that they will

either flash over or burn out is

serious. For practical purposes,

this amounts to a limitation on the

absolute value of the reflection

coefficient which can exist between
i i- • i j i i

FlG - 16 - 19
the coupling impedance and the plate

impedance of the tubes. The situation is illustrated by Fig. 16.19. The

elements Ra, La , and Ca represent the antenna impedance. The reflection

coefficient between Ra and Zx is that to which direct design attention is

paid, while the reflection coefficient of final interest is that between the

plate impedance Rp and Z2.

The values of Ra, La, and Ca determined by measurement give an

antenna reactance equal to about 2.5 times the antenna resistance at either

edge of the band.* If the coupling network were merely a transformer

matching the antenna and plate resistances this would give a reflection

coefficient of 78 per cent. In accordance with (16-17) the minimum
reflection coefficient obtainable with an ideal network is 28 per cent. Since

it is not economically feasible to employ a large number of elements in a

circuit operating at so high a power level, however, it must be expected

that the final reflection coefficient will be somewhat worse than this limit.

To explore the situation, let it be supposed that networks are to be

designed which are respectively 60 per cent and 80 per cent efficient. In

other words, the networks are to be such that 60 per cent or 80 per cent of

the total integral of log
| 1/p |

in (16-15) falls within the useful band. This

will give reflection coefficients in the useful range of 47 per cent and 36

per cent respectively. In terms of the relationship expressed by equation

(16-19), the reduction of the original reflection coefficient of 78 per cent to

47 per cent is
f-g-

of the reduction, from 78 to 28 per cent, which could be

obtained by using an infinite number of elements. Similarly, the reduction

from 47 to 36 per cent wipes out -j-J of the amount remaining to' be gained.

Since the two ratios, -§-jj- and -j-g-, are approximately equal, the rule given by ,

(16-19) would lead us to expect that the network with 80 per cent efficiency

would require about twice as many elements as that with 60 per cent

* This assumes a rather narrow voice band. For a band of normal width the ratio

is somewhat higher. A narrow band is used here for purposes of calculation since the

final circuit is not very selective and effective transmission can be secured over a band

somewhat greater than the nominal one.
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efficiency.* It is interesting to notice that the rule is borne out in this

particular case.

The actual design process begins with the construction of hypothetical
complete characteristics for log

j 1/p
J
and the computation of the imag-

inary components which must correspond to them, in accordance with the
methods described in the preceding section. The results for the 60 per cent
and 80 per cent cases are shown respectively by Figs. 16.20 and 16.21. All

the curves are drawn for the low-pass equivalent circuit. The curves

•75
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Fig. 16.20

labelled A are drawn for log
| 1/p |

and those labelled B for the correspond-

ing phase angle. In Fig. 16.21 the real component outside the band is

drawn in the simplest possible way, as a single straight line segment.

Figure 16.20 includes also an alternative characteristic which varies in a

way more nearly in accordance with the characteristics one would intui-

tively expect from a physical circuit, in order to illustrate how different

choices in this region may affect the solution. In any event, the area under

the real characteristic outside the band must, of course, be the proper frac-

tion, 20 or 40 per cent, of the total.

Since the curves in Figs. 16.20 and 16.21 specify the reflection coefficient

between Zt and Ra in Fig. 16.19 completely we can readily determine from

them what Z\ must be in terms of Ra . If the parasitic reactances La and

Ca are subtracted the computation also fixes the network impedance Z3,

which is the quantity with which we will deal directly. For the two cases

illustrated by Figs. 16.20 and 16.21 the resulting Z3 characteristics are

those shown by Figs. 16.22 and 16.23, respectively.

* Roughly the same results are secured if the performance is measured in terms of

log
I
1/p

I

rather than in terms of
| p |

itself, although the two measures would evidently

depart seriously from one another if the limiting reflection coefficient were very much
smaller than 28 per cent. In view of the uncertain logical foundation for (16-19),

especially in the region of small values of n, it is scarcely feasible to decide which meas-

ure should be chosen. When n is large and the approximation to the limit is very close,

it is of course permissible to use either measure since departures from the ideal meas-

ured in arithmetic and logarithmic terms become proportional to one another.
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It is next necessary to determine suitable configurations for the coupling

circuit by inspection, using the characteristics in Figs. 16.22 and 16.23 as

guides in the process. For the characteristics of Fig. 16.22 this is a simple

matter. An appropriate circuit is obviously the resistance and capacity in

2K,.

R"""^

-A' <^

Fig. 16.22 Fig. 16.23

parallel shown by Fig. 16.24. This gives the result indicated by the

broken lines in Fig. 16.22. The simulation of the characteristics in

Fig. 16.23 requires a more complicated network. Advantage may, how-

ever, be taken of the fact that since the characteristics must obviously

represent a physical structure of minimum reactance type it is necessary to

give explicit consideration only to the resistance component. The react-

ance will be supplied automatically. If the resistance is simulated by the

method described in connection with equation (16-21) the resulting con-

figuration is that shown by Fig. 16.25. It leads to the characteristics shown

1
Fig. 16.24 Fig. 16.25

by the broken lines in Fig. 16.23. The characteristics of Fig. 16.23 can also

be simulated by first converting them to an admittance. Regarded in this

form they must, of course, still specify a physical network, although not

necessarily one of minimum susceptance type. With this procedure the

resistance and inductance in Fig. 16.25 are determined from the con-

ductance requirement and the capacity is supplied as a final step to give

the required susceptance.

This design procedure has been described in great detail, in spite of its

almost childish simplicity, chiefly to illustrate the advantages which accrue

when the contour integral relations are used to provide a complete initial

picture, including both real and imaginary components at all frequencies,
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of the network function to be realized in the design. The further steps
in the design, however, are of less interest and need only be summarized.
Briefly, the structure of Fig. 16.24 was chosen as giving an adequate result

in the simplest possible manner. In band-pass terms it represents, directly,

a resistance in parallel with an anti-resonant circuit. Unfortunately, how-
ever, the resistance does not have the right value to be identified with the
plate resistance of the tubes. To avoid this difficulty the circuit was
actually constructed in the form shown by Fig. 16.26. The theoretical

justification for making this change can be understood if it is recalled from
the discussion at the end of Chapter X that the locus of the impedance of a

-^ ^JUULr]\

Fig. 16.26 F1G . 16.27

resistance and anti-resonant circuit in parallel must be a circle, as shown
by the solid line in Fig. 16.27. If we regard the condensers in Fig. 16.26

as fixed reactances over a narrow band, however, the argument in Chap-
ter X shows that the impedance locus in Fig. 16.26 will be a circle also. It

is shown by the broken line in Fig. 16.27. The diameter of the new circle

can be adjusted to the proper value, for a given Rp , by a suitable choice of

the shunt capacities and it can be moved vertically into coincidence with

the old circle by the addition of a final reactance, which can be incorporated

with the antenna tuning. The shunt condensers, since their kva require-

ment is small, do not add greatly to the cost of the network.

Although the analysis has envisaged single-band transmission, in the

actual network it was necessary to provide for the transmission of two
bands, one centered at 60 kc and the other at 68 kc. This was accom-
plished by replacing each resonant circuit by two resonant circuits in paral-

lel and making minor readjustments to compensate for changes in the

resistance of the antenna and the reactance of the shunt condensers in

Fig. 16.26 in going from one band to the other. In virtue of the conserva-

tion of band width principle, double tuning the antenna doubles the Q
which the antenna will exhibit over a single band. To avoid this, a fixed

resistance, producing 3 db loss, was added in series with the antenna.



INPUT AND OUTPUT CIRCUIT DESIGN 383

The final result is shown by Fig. 16.28. The diagram represents the

plot of the impedance Z2 of Fig. 16.19. The point P represents the plate

resistance of the output tubes and the heavy circle the locus of impedances

whose reflection coefficient against this resistance is 45 per cent. It will be

seen that the plot ofZ2 encircles the point P. This is because the reflection

coefficient at this point is necessarily not a " minimum phase " function, for
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Fig. 16.28 Fig. 16.29

the reasons described in connection with the proof of the reflection coeffi-

cient theorem. The corresponding plot of the Z\ impedance of Fig. 16.19,

on the other hand, gives the same absolute value of the reflection coefficient

but it does not encircle the reference point. This is illustrated by the small

scale plot of Fig. 16.29.

16.7. General Consideration in the Design of Input and Output Circuits for

Feedback Amplifiers

If we are to apply the theorems on the characteristics obtainable from

input and output circuits terminated in various ways, it is obviously neces-

sary to know, first of all, what elements of the amplifier are to be regarded

as furnishing the termination. There is, of course, no difficulty with this

question if the amplifier is of non-feedback type, like the structure which

was used in illustrating the reflection coefficient theorem. In a feedback

structure, however, the elements with which the input or output circuit is

effectively terminated under operating conditions are not necessarily those

which would be important if we opened the loop and analyzed the structure

as a straightforward non-feedback device. An indication of how these

changes may come about is furnished by the various theorems in Chapter V,

which showed that the actual or active impedance presented by the ampli-

fier proper to the input or output circuit, or through the input or output

circuit to the line, may be quite different from the impedance which would



384 NETWORK ANALYSIS Chap. 16

be computed in the absence of feedback. Unfortunately for the simplicity

of the situation, however, these modifications hold only for certain charac-

teristics of the input and output circuits. In studying other aspects of

their performance, apparent changes in impedance caused by feedback do
not appear. If the example given later of the design of an input circuit for

a feedback amplifier is to be intelligible it is first necessary to review this

ground.

It is simplest to begin by listing the characteristics of the input or output
circuit which are most commonly of engineering interest. In a non-
feedback amplifier we are ordinarily interested in one or both of the follow-

ing considerations:

1. The impedance which the input or output circuit presents to the line.*

2. The contribution of the circuit to the total amplifier gain. This is, of

course, the transmission from the input line to the input grid, in the

case of an input circuit, or the transmission from the output plate to

the output line, in the case of an output circuit.

The use of feedback affects this situation in two respects. In the first

place, it makes it necessary to evaluate both characteristics just men-
tioned in terms of the active rather than the passive state of the system.

The fact that the active impedance of a feedback amplifier may differ from

its passive impedance has already been mentioned. As later discussion

shows, a similar correction may be necessary in evaluating the contribu-

tion of the input and output circuits to the overall amplifier gain. The
use of feedback also makes it desirable to study the characteristics of the

input or output circuit from two additional points of view. These are

3. The contribution of the input or output circuit to the transmission

around the feedback loop.

4. The efficiency of the circuit in delivering power from the output tube

to the line, in the case of an output circuit, or in providing a high

signal-to-tube-noise ratio at the grid of the input tube, in the case of

an input circuit.

The first of these is self-explanatory. The second would be indistinguish-

able from the straightforward transmission characteristic of the circuit, as

* In practical amplifiers the impedance which the circuit presents to the tubes

may also be of direct importance. For example, if the output tube is of screen grid

type, the impedance to which it is connected should be kept below some limiting value,

irrespective of other considerations, in order to minimize non-linear distortion.

Questions of this sort are not considered here, however, since in the situations at

which the discussion is directed the impedance levels attainable in the circuit are

limited much more severely by parasitic capacities.
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given by (2) above, if we were dealing with a non-feedback amplifier. In a

feedback structure, however, the characteristics defined by paragraphs (2)

and (4) are not necessarily identical. In many applications the distinction

between them is, in fact, the crux of the problem.

The situation can be studied most easily by recalling from Fig. 3.3 of

Chapter III that the input or output circuit of an ordinary feedback ampli-

fier must actually be regarded as a network having three pairs of terminals.

One pair leads to the line, one pair to the fi circuit proper, and one pair to

the /? circuit proper. For the purposes of this discussion the diagram can

conveniently be represented in the form shown by Fig. 16.30. The mean-

Fig. 16.30

ings of the various symbols should be easily understood from the drawing.

For example, kx represents the path from the input line to the input grid

and is so chosen, as a numeric, that if the line voltage is E , the input grid

voltage Ey. is kiE . Similarly, Gm0 represents the circuit from the input

grid to the output plate and corresponds to the output plate current

Iii — GmoEp. In the same way the current delivered to the /3 circuit on
account of the flow of plate current is given by Ip = k'^Ip. and this produces
a corresponding voltage E& = /3 //j at the terminals connecting the other

end of the /3 circuit to the input circuit.* With the exception of Gm0 ,

which represents the ordinary forward circuit gain, all these quantities are

to be evaluated with the tubes dead. It is convenient to suppose that the

tube admittances are incorporated as part of the input and output circuits,

so that the box Gmo exhibits an infinite impedance at each end.

The input and output circuits in Fig. 16.30 are defined by the passive

impedances Zp and Z'v and the sets of parameters k\, k2 , and k3 , or k'u k'%,

* The /3 circuit is supposed here to be driven by a current and to produce a voltage

in response under the assumption that its impedance is much smaller than that of the

rest of the circuit, as it is, for example, in the series feedback amplifier to be examined
later. Other assumptions, which may be more convenient for other types of feedback,
are, however, obviously equally legitimate and affect the final results only in self-

evident ways.
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and k3 , representing various possible transmission paths through the circuit.

The passive impedances and the parameters k3 and k3 specifying the trans-

mission between the circuit and the input or output lines are, however, of

interest only in determining the actual impedance of the amplifier at input

or output and can be dismissed briefly. If we assume that the feedback is

very large, for example, it can be shown that the current flowing in the

input line, with the tubes active, in response to the generator E , is

Thus the active admittance of the circuit, including the line impedance, is

equal to the passive admittance, 1/ (Zp + Ro), of the input circuit in series

with the line diminished by k3ki/k2 . Equation (16-22) is included here

merely for the sake of completeness, since this discussion will not deal with

amplifier impedances. For practical purposes, moreover, it is not very

useful, except perhaps as a convenient expression of the fact that the active

impedance of the amplifier can be equal to its passive impedance only if we

set k3 = 0, or, in other words, only if we choose a circuit having zero trans-

mission, on a passive basis, between the /3 circuit and the line. In ordinary

circuits the rules established in Chapter V should be more convenient.

The input and output circuit parameters which remain to be investigated

are k\ or k[ and &2 or k^. In view of their obvious role the second of these

pairs can be immediately identified and named as the loop transmission

characteristics of the input and output circuits. The first pair, of course,

represent the transmission from input line to input grid, or from output

plate to output line, when the amplifier is passive, but since we may expect

the active and passive characteristics of the network to be somewhat

different it is not immediately clear what physical significance they may
have for the final amplifier. We observe, however, that k[ determines

the ratio of the final output current to the current 7M whether the circuit

is supposed to be active or passive. Since the tube admittance is supposed

to be part of the output circuit, Ip must be the actual plate current flowing

in the plate circuit of the last tube and is fixed by the power handling

capacity of the tube, without regard to the fact that the tube is part of a

feedback circuit. Thus the parameter k[ determines the efficiency of the

output circuit in providing a large power output from the final amplifier.

Similarly, the parameter ki measures the efficiency of the input circuit in

providing a high ratio of signal to tube noise in the first tube. This can be

seen most easily by recalling from Chapter V that the final signal output

for a unit generator in the input line is equal to the fractionated gain of the

amplifier, taken with respect to the first tube, divided by the return differ-

ence for that tube. The formulae of Chapter V, however, show that the
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current flowing in the output in response to a noise generator in the first

tube is equal to the current which would flow if the first tube were dead,

divided, again, by the return difference for the tube. When the signal-to-

noise ratio is computed, the two F's cancel out and the result reduces, in

effect, to that which would be secured from the non-feedback amplifier

obtained by opening the feedback path in the actual structure. The
parameters k\ and k{ will be called the passive transmission or volume

performance characteristics of the input and output circuits on this account.

The contributions of the input and output circuits to the final gain

characteristics of the operating amplifier are still to be considered. They
can be evaluated most easily by studying the expression for the final gain

directly. The fractionated gain with respect to any one of the tubes in the

forward circuit is evidently kik[Gm0) and the return ratio for any tube is

— &2&2Gmo/3o- If the direct transmission can be neglected, the current

flowing in the output line in response to the generator Eq is given by (5-28)

of Chapter V as the ratio of the fractionated gain to the return difference.

The reference from which the net gain is computed can be taken as the

current E /2Rq which would flow in the output line if the amplifier were

removed and the input and output lines connected directly together. This

gives the final gain expression as

When the loop gain is high, equation (16-23) reduces to

In this expression 2Ro/Po evidently represents the gain characteristic which

can be ascribed to the /S circuit proper, while the ratios ki/k2 and k[/k2 are

the contributions of the input and output circuits. These last will be

called the externalgain or active transmission characteristics of the input and

output circuits. In view of the significance which has already been

assigned to the separate k's we can evidently state the

Theorem: The external gain characteristic of an input or output circuit

is equal, in logarithmic units, to the difference between the

volume performance and loop transmission characteristics of

the circuit.

Although this relation is direct enough analytically, its implications for

actual network design are somewhat less binding than they may appear to

be. This is because we are usually interested in the gain and volume

characteristics only in the useful band, while the problem of stabilizing the
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feedback loop, which involves the loop transmission characteristic, is most

acute beyond the useful band. For practical purposes, consequently, it is

often possible to regard the three transmission characteristics as inde-

pendent, within modest limits.

In an actual amplifier, the distinction between the gain characteristics

of the input and output circuits and their efficiency in transferring energy

into and out of the amplifier is usually dependent principally upon the

admittances at the input and output ends of the n circuit proper. As

noted previously, these admittances are incorporated as part of the input

and output circuits for purposes of analysis. It is evident that if they are

greatly increased both the volume and loop characteristics will be corre-

spondingly degraded. The changes in these characteristics must, however,

be the same, by Thevenin's theorem, and the external gain characteristic

will consequently be unaffected. Thus in a low-frequency amplifier the

distinction between the gain and volume characteristics is generally insignif-

icant, unless the plate conductance of the output tube represents an effect

worth considering. At higher frequencies, on the other hand, where the

parasitic tube capacities lead to large tube admittances, the distinction

becomes more important.

~w"^Y7
c z

Fig. 16.31

16.8. Volume Performance and External Gain Characteristics of Input and

Output Circuitsfor Coaxial Repeaters

An illustration of the analysis just concluded is furnished by the input

and output circuits in certain of the repeaters used in the coaxial system.*

The feedback connections in the repeaters are of series or cathode type. If

we consider the series connection for simplicity the general repeater

schematic takes the form shown by Fig. 16.31. The input and output

circuits are identical. The controlling parasitic elements in the structure

are the capacities C and C . The tube capacities, C , furnish the reference

impedance in terms of which the impedance level of the rest of the circuit

* See footnote, p. 285.
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is determined.* They should be as small as possible. The capacity C is a

prescribed multiple of C , determined by methods described later, and is

furnished physically by the high-side capacity of the transformers plus,

usually, an additional padding condenser. The feedback impedance Z$

is evidently equal to the voltage-current ratio which was symbolized by /3o

in the preceding discussion. In accordance with (16-24) it can be fixed as a

multiple of the line impedance as soon as the required final gain and the gain

of the input and output circuits are determined. It is ordinarily very small

in comparison with the other impedances in the feedback loop.

The volume characteristic, ki, of these circuits is easily identified. If we
neglect the small impedance Z$ it is evidently the transmission between high

side and line when the high-side termination of the circuit is taken as the

total capacity C + C . The loop characteristic, k2 , can be obtained if it is

recognized that the feedback voltage is, broadly, the voltage drop across Zp

caused by the flow of plate current from the output tube. Because of the

presence of Co, however, only a fraction of the plate current actually

reaches Zp. If we neglect Z$ again in comparison

with the other impedances of the circuit this

fraction, in the notation of Fig. 16.31, is obviously

Z /(Z + Zo). Similarly, at the input end the

impedances Z and Z$ in series form a potenti-

ometer which imposes the fraction Z / (Z + Z )

of the total voltage across Zg on the input grid. In either case, the frac-

tion Z /(Z + Z ) is obviously k2 . This quantity is frequently called the

transformer potentiometer term in practical design.

The relation among the loop transmission, volume performance and
external gain gives the external gain characteristic as (Z + Z )/Z times

the volume performance for either the input or output circuit. This can
be given a simple physical interpretation. With the inputf circuit redrawn
in the form shown by Fig. 16.32, let E represent the high-side voltage when
the terminals AA' are open-circuited. It follows from Thevenin's theorem
that the voltage existing across C when the'terminals AA' are closed will be
Z E/(Z + Z ), and this must, of course, be the volume performance volt-

age. The external gain voltage is therefore E itself. In other words, the

external gain characteristic is the same as the open-circuit characteristic of

the input or output circuit proper, when no allowance is made for the para-

* This assumes a high frequency broad-band structure of the type used in the

coaxial system. In a low frequency amplifier the limiting impedance levels might be
found from other considerations, the tube admittances themselves being negligibly

small.

t The principle of reciprocity shows that the same result follows for the output
circuit.
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sitic admittances of the forward circuit. This may be verified by recalling

from Chapter V that the active impedance which terminates the input or

output circuit proper in a series feedback amplifier is substantially an open
circuit.

The principal result established by this analysis is the conclusion that

the parasitic capacity which limits the input or output circuit response is

either C or C + Co, depending upon whether we are examining the external

gain or the volume characteristic. In practical design the choice of C in

terms of Co depends upon a compromise between considerations of volume
performance and feedback. The volume performance obtainable is

maximized if C is very small in comparison with C . On the other hand,

the loop transmission characteristic of the circuit reduces at very high

frequencies to C/(C + Co). It is shown in a later chapter that maximum
feedback in the useful band will be realized, other things being equal, if C
is very large, so that the asymptotic loss represented by the factor

C/ (C + Co) is correspondingly small. For practical purposes we can

suppose that a suitable compromise between these considerations is found

when C is chosen in the general range 1.2C to 2C .* The exact value of C
is not very critical and is used as a design parameter in the discussion given

later.

The physical significance of the conceptions of external gain and volume

performance can be illustrated by a consideration of the requirements on

these characteristics which would be imposed in a somewhat simplified and

idealized coaxial system. In the idealized system the external gain and

volume performance are the same for any input or output circuitf and each

is equal, as a function of frequency, to one-half the characteristic required

to equalize the attenuation of the line connecting successive repeaters.

The reason for setting these requirements can be understood from

Fig. 16.33. The sketch represents the output stage of one repeater, the

first stage of the succeeding repeater, and the intervening line.

The external gain requirement on the input and output circuits is speci-

fied in order to allow the complete system to have a flat transmission

* The lower limit is a theoretical value, based upon the assumption that feedback

is of interest chiefly in reducing modulation distortion and that the volume perform-

ance is of interest in determining signal-to-noise ratio according to the analysis made

in the following paragraphs. Modulation and signal-to-noise ratio are related by the

fact that one can be improved at the expense of the other by changing the signal level

at which the system operates. The optimum compromise under these conditions is

obtained for C = 1.2C . The use of a larger C is suggested because feedback is fre-

quently of interest for other reasons than modulation reduction.

f It is assumed, as in the previous discussion, that the input and output circuits

are identical.
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characteristic without the use of equalization in the line.* This is desirable

for reasons which will appear later. In Fig. 16.33 it leads to a flat trans-

mission characteristic between points B and C and the overall transmission

characteristic of the system will be flat if the repeaters are so designed that

the /?o of (16—23) is a constant. In general, we might, of course, avoid

the necessity of introducing equalization in the line without specifying the

external gain of the input and output circuits, by supposing that /} is an

appropriately varying function of frequency. In the actual coaxial repeat-

ers, however, the /3 circuit design must include regulation in any case. If

the configuration is to be one permitting a maximum amount of feedback

this makes it difficult to incorporate also any very substantial amount of /3

circuit equalization.

LEQUAl voltages
FOR All CHANNELS

EqUAL VOLTAGES-
FOR ALL CHANNELS

Fig. 16.33

The volume performance requirement depends upon a consideration of

the signal-to-noise ratio in the system. The signal level at which the

system operates is determined broadly by the power capacity of the repeater

output tube and we can suppose that the tube will work at maximum effi-

ciency if the signal level at its grid, point A in Fig. 16.33, is the same for all

channels. Since the self-shielding properties of the coaxial line allow

external interference to be neglected, the sources of noise to be considered

are resistance noise and tube noise in the first stage of the repeater. These
two can be represented as voltages appearing, respectively, at the points E
and D in Fig. 16.33 and will, likewise, be constant with frequency.

It is assumed in setting the requirements that tube noise is more impor-
tant than resistance noise. The signal-to-noise ratio of the system then

* In practice the equalization method described here is carried out only partially so

that residual equalization does actually appear in the line at low frequencies. This is

desirable in any event since, with the unterminated transformers described here, the

repeater impedances give a very poor match to the line and it is necessary to maintain

a certain minimum loss in the line to suppress interaction effects between successive

line-repeater junctions.
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depends upon the transmission from A to D in Fig. 16.33. This trans-

mission may be called the volume performance per repeater link.* We will

evidently secure the best repeater link volume performance, on the whole,

if the line contains no unnecessary loss. This is the reason for equalizing

the system by means of the external gain characteristics of the transformers

in the manner just described. If the volume characteristic of the trans-

formers themselves were flat this would give a repeater link performance

which would be poorest for the top channel of the system, where the loss

of the line is greatest, and would become increasingly better at lower

frequencies. When the transformer volume characteristic assumes the

prescribed shape, however, the response of the upper channels is improved

at the expense of the others until the complete repeater link characteristic

from A to D becomes constant at all frequencies in the useful band. This

is evidently the optimum condition if the merit of the system is evaluated

in terms of the signal-to-noise ratio in its weakest channel. It may be

noticed in passing that if we assume that resistance noise rather than tube

noise is controlling, the analysis follows the same lines except that now the

transmission from A to E in Fig. 16.33 should be flat, so that the volume

characteristic of the output circuit alone should equalize the complete line.

That of the input circuit should be flat if there is residual tube noise to be

overridden, and is otherwise unimportant.

16.9. Illustrative Design of an Unterminated Input or Output Circuit

As the final topic in this chapter we will consider the design of a network

to illustrate the theorem on open-circuited input or output circuits which

was developed at the beginning of the chapter. It will be assumed that the

circuit is intended for a series feedback amplifier of the type described in the

preceding section and that its external gain and volume performance

characteristics are to satisfy approximately the idealized requirements

developed there. In accordance with that discussion the external gain and

volume characteristics depend respectively upon the real components,

Ri and R2 , of the impedances Z\ and Z2 in Fig. 16.34. The two resistances

must evidently be equal throughout the useful band since it is physically

obvious that they will be equal at low frequencies and the equalization

requirement is the same for the external gain and volume characteristics.

* A more complete discussion of this and other aspects of volume performance is

given in the author's U. S. Patent No. 2,242,878. It is also possible to extend the

volume performance conception still further, as has been done principally by the

author's colleague Mr. J. M. West, to make it apply to transmission through a com-

plete communication system including intermediate repeaters, or to make it cover

such situations as the transmission of television signals, where noise interference in

different parts of the band is of varying relative importance.
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Zj^Ri+iXj

Fig. 16.34

Outside the useful band, however, the two resistance characteristics must

be different since they correspond to different limiting capacities and there-

fore to different resistance inte-

grals. Since the ^characteristic

is the one which determines the

final signal-to-noise ratio we can

suppose that this design will be

quite efficient, with a relatively

small surplus resistance beyond

the band. The surplus in the Ri characteristic, which corresponds to a

smaller limiting capacity, must, however, be fairly substantial.

The design begins with the computation of the desired characteristic for

Ri or R2 . In order to equalize half the power loss between repeaters these

characteristics should vary as <?", where a represents the complete line loss

per repeater link. If we suppose that a is 40 db at the top frequency and

varies as V/j which is the correct assumption for the attenuation corre-

sponding to about 5 miles of ordinary coaxial cable with a top frequency of

2 mc, this leads to the resistance characteristic shown by Curve I of

Fig. 16.35. The scale of the plot and the portion of it which lies beyond
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the edge of the useful band, at co = o> , can be ignored for the moment. In a

practical design, of course, we cannot expect to control the transformer

characteristics at low frequencies in the manner indicated by this curve.

If we assume only a conservative amount of tuning the actual resistance

characteristic, for design purposes, may be supposed to take some such

shape as that shown by Curve II. Since the final limit on the performance
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of the circuit depends upon the resistance integral condition, it is evident
that even as conservative a choice as this allows us to realize a large fraction
of the advantage which can theoretically be obtained by using a sloped
rather than a flat characteristic.

We have next to consider what condition must be met if the two resist-

ances Ri and R2 are to be equal to each other and to the characteristic

specified by Fig. 16.35 when account is taken of the fact that the corre-

sponding impedances, Zi and Z2 in Fig. 16.34, differ only by the parallel

capacity Co. It is readily shown that the requisite condition is one which
applies to the accompanying reactance characteristics X\ and X2 and is

given by

X\ — —Xi
OlC

<*
2ClR2 ~\, (16-25)

where R, as in Fig. 16.35, represents either i?i or R2 . The reactance speci-

fied by this equation tends to be small when oiCqR is small but it increases

1.0

.? 0.5

<"
ju
D.

E
c -0.5

-1.0

1T~

&>/<u»

T—

-

\ to

\ni *

Fie. 16.36

rapidly when coCoR approaches unity, while beyond unity a solution is no

longer possible. In Fig. 16.35 the resistance scale has been so chosen that

the maximum value of wC R is 0.95. This approximates the maximum
possible value but leaves a slight margin to avoid the sharp changes which

occur when the limit is approached extremely closely. If we deal in

particular with Curve II of Fig. 16.35 the resultingX2 characteristic is that

shown by Curve I of Fig. 16.36.

The determination of a desirable reactance characteristic from equa-

tion (16-25) is unfortunately not enough to allow us to proceed with the
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design. If the final network is to be realizable we must also make certain

that the reactance is physically consistent with the prescribed resistance.

This question is most easily settled for a low-frequency region extending

over perhaps one-half or two-thirds of the total band. It is easily shown

that the reactance characteristic in this region will be almost zero whether

it is specified by (16-25) or by the general relations between the real and

imaginary components of network functions developed in preceding chap-

ters. In any event, an accurate reactance characteristic is not necessary

in order to provide substantial equality between Ri and R2 at these fre-

quencies.

Near the top of the band advantage may be taken of the fact that the

reactance which must correspond physically to the required resistance will

depend largely upon the way in which the resistance behaves just beyond
the useful band. Since this part of the resistance characteristic is not

specified it can be employed to secure the reactance required by (16-25).

The procedure is especially simple if we deal with R2 and X2 rather than
with i?i and X\ since, as the previous discussion pointed out, the surplus of

R2 beyond the band is much less than that of Ri. Thus the R2 characteris-

tic outside the band can be basically nothing more than a relatively rapid

diminution to zero in any event, and to secure the proper reactance we need
merely make slight adjustments in the speed at which it decreases.

In order to make these adjustments we begin by computing the react-

ance which corresponds to the prescribed resistance characteristic within
the useful band. If we use the straight line approximation to Curve II of
Fig. 16.35 shown by the broken lines in the figure, together with the charts
of Chapter XV, this gives the reactance shown by Curve II in Fig. 16.36.

At w = o) the reactance is +0.5 while the required reactance given by
Curve I is —0.7. The necessary difference, — 1.2, must be supplied by the
resistance characteristic outside the useful band. As a preliminary
assumption, we may suppose that the resistance characteristic outside the
band is merely a discontinuous drop, as indicated by the broken line III' in

Fig. 16.35. With the help of the charts again, we find that the necessary
reactance at o> will be supplied if the drop occurs at o> = 1.04a> . In
order to make the solution more realistic the drop may be replaced by a
slanting line of the type shown by III in Fig. 16.35. This makes a minor
quantitative change in the result which is included in this example although
it is scarcely large enough to be important in a practical design. The
complete reactance characteristic corresponding to the slanting line is

shown by Curve III of Fig. 16.36. When added to Curve II it gives the
match to the required reactance indicated by Curve IV. The simulation
of the required reactance is not perfect in an intermediate range between
w = 0.5o> and w = 0.8« but in a practical design, where relatively large
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tolerances may be permitted in volume performance if the external gain is

precise, the difference between i?i and R2 to which the error corresponds

may be regarded as insignificant.

If more equalization is demanded from the input and output circuits

the analysis follows the same general pattern. The reactance shown by
Curve II in Fig. 16.36 will, however, tend to increase, since it reflects the

slope of the resistance in the useful band. This makes it necessary to allow

the resistance characteristic to drop off more sharply beyond the band in

order to secure the correct reactance at the band edge and it also tends to

open the gap between Curves I and IV in Fig. 16.36. Conversely, as the

circuits are assigned flatter characteristics they may be made less selective

and their external gain and volume performance may be made more nearly

identical.

Fig. 16.37

The rest of the design procedure follows the routine described earlier in

the chapter and need not be described in detail. Briefly, the next step in

the design consists in the calculation of the area bounded by the lines II

and III in Fig. 16.35. If we make an allowance for a slight high-fre-

quency tail on the resistance characteristic, as indicated by the broken

line III" in Fig. 16.35, the area amounts to 0.53, in the units in which the

figure is drawn. Since we are dealing with the R2 characteristic, whose

limiting capacity is C + C , however, it also follows from the resistance

integral theorem (16-1) that the area in these units is (ir/2)[C /(C + Co)].

We can consequently determine that C = 1.96C .

To continue the design we next compute the impedance Z3 in Fig. 16.34

by subtracting the parallel capacity C + C"o from the Z2 specified by

Figs. 16.35 and 16.36. In making this computation the reactive com-
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0.124

ponent of Z2 should, of course, be taken as Curve IV rather than the

desired Curve I in Fig. 16.36, since it is a waste of effort to attempt to go

beyond the limit of what is physically possible. The im-

pedance obtained from the computation is shown by Fig.

16.37. We next match the real component of this new

impedance by a suitable structure of minimum reactance

type. This must be done by cut-and-try methods. In

the present situation a suitable structure is found in the

combination shown by Fig. 16.38. The element values

are given on the assumption that the frequency and im-

pedance units are taken as coo and 1/ojoQ) respectively.

The design is easily obtained by observing that the resistance R3 to which it

leads satisfies the formula

Fig. 16.38

Ra = RlXI

rI + (x1 + x2y
(16-26)

0.124
0.660

0.333

where Xi and X2 are respectively the reactances ofthe anti-resonant circuit

and of the capacity. The maximum value ofR3/X2 obviously occurs when

Xi + X2 = 0. But since X2 must vary as oT1 we need merely plot ca
2
i?3

in order to locate the maximum, and with this much established the rest of

the design follows readily. It leads to the match to the desired R3 charac-

teristic shown by the crosses in Fig. 16.37.

As the final step the reactance furnished by the resistance matching
network is computed and subtracted from X3 in Fig. 16.37. The difference

is then simulated by a series inductance. The crosses in Fig. 16.37 show
the accuracy of simulation obtained

when the inductance is chosen as

0.660, in the units used previously.

Ifwe include also the parasitic capaci-

ties the complete network takes the

form shown by Fig. 16.39. It can be

converted into a physical circuit in-

cluding a transformer by identifying the series inductance with the leakage

of the transformer, in the manner already described in connection with Fig.

16.13. The final characteristics for Ri and R2 are given by Fig. 16.40.

The crosses are points introduced from the original characteristic of Fig.

16.35 for the sake of comparison.

The series inductance which is obtained as the final element in the design

process deserves a further word of comment. It follows from the discus-

sion given earlier in the chapter that the reactance characteristic which
must be simulated at the final stage in the design is always that of a physical

reactive network, but it may appear to be only a lucky accident that the

Fig. 16.39
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required network is a coil, and so can be identified with the leakage induct-
ance of a transformer. In fact, however, this is a result which is reason-

ably to be expected if the other parts of the design process, and in particu-
lar the estimation of C from the resistance integral theorem, are accurately

tor
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carried out. To illustrate this, the design has been repeated on the

assumption that C has been chosen through some mistake as 1.75Co

rather than as the correct value 1.96C - This change leads to new charac-

Fig. 16.41

teristics for R3 and X3 differing slightly from those shown by Fig. 16.37.

The new R3 can, however, be simulated by a configuration of the same type

as that employed previously, and to about the same accuracy.

The major effect is encountered when we attempt to choose the final series

reactance. This is illustrated by Fig. 16.41. Curve I is the reactance



INPUT AND OUTPUT CIRCUIT DESIGN 399

which must be supplied in the earlier design and Curve II the reactance

required in the new design. The first curve is quite accurately a straight

line but the second bends slightly upward and would require an anti-

resonant circuit, with a rather remote anti-resonance, to represent it to the

same standard of precision as has been employed in the rest of the design.

If we introduce such a circuit the configuration of Fig. 16.39 is replaced by
that shown in Fig. 16.42. In addition to the original parasitic capacities C
and Co there is a new capacity path, composed of C% and C3 in series,

through the network at high frequencies and L L
the new path is exactly sufficient to com- r-^-M rJUL1
pensate for the difference, 1 .96C — 1 .75C , C L| |_J] L) |_J~

between the values assumed for C in the <r„ °l

two cases. Conversely, if too large a C [

<i
C

' ^c

I
is assumed we may expect the required p. .,.,,

reactance to be that which would be ob-

tained from an inductance in parallel with a negative condenser, with a

downward curvature as illustrated by the broken line Curve III in

Fig. 16.41. If either of these reactance characteristics is encountered the

obvious remedy is to repeat the design with a corrected value of C. An
irregular characteristic, falling into none of these three categories, is symp-
tomatic of inaccuracy in one of the earlier stages of the design.

16.10. Practical Modifications in the Design

The illustrative design just discussed has been intended primarily as an
example of the application of the methods developed in previous chapters

rather than as a model for practical design. For practical purposes the

chief objections which may be directed at it appear to be the unnecessary
accuracy with which the volume performance characteristic is controlled

and the sharp selectivity of the circuit. The two are related by the fact

that the sharp selectivity is introduced to provide a reactance component
which will make the volume performance and external gain characteristics

identical near the edge of the band. It can be reduced by relaxing this

requirement and by accepting a somewhat less efficient design, including a

resistance maximum which approaches the lii»it \/aiQC set by (16-25) less

closely.

Examples of practical circuits with somewhat reduced selectivity are

shown by Figs. 16.43 and 16.44. They are intended for amplifiers with
useful bands of the order of 2 or 3 mc. In Fig. 16.43 the place of the

shunt capacity and anti-resonant network of Fig. 16.39 in controlling

i?3 is taken by the simple capacity Ci, the other elements retaining their

previous functions. In Fig. 16.44, R3 is controlled by the three elements

C%, Lx, and C2, using the technique described in connection with equa-
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tion (16-21).* The leakage inductance is identified, in this circuit, with

L\. The control ofX3 is exercised by the separate electrical coil Z.2 with

parasitic capacity represented by C3 . The proper parasitic capacity

appears automatically in the simulation ofX3 if it is allowed for in advance

as part of the total high-frequency path through the network, in accordance

with the discussion given in connection with Figs. 16.41 and 16.42. The
physical significance to be ascribed to Co and C is also changed in this

circuit. In the series feedback amplifiers previously discussed they were

identified respectively with the tube capacity and the transformer high-side

capacity, plus padding. The amplifier with which Fig. 16.44 is used is,

however, of the cathode feedback type shown originally by Fig. 3.12 of

Chapter III. Since the substitution of cathode for series feedback places

the cathodes of the input and output tubes off ground, a distinction must be

made between the capacity of the input grid or output plate to its cathode

and the capacity of the grid or plate to ground. These capacities can evi-

L
ic.

Fig. 16.43 Fio. 16.44

dently be identified respectively with C and C in Fig. 16.44. It is to be

observed that in the cathode connection the volume performance capacity

C + C is the same, except for slight padding adjustments, as the total

tube capacity, while in a series feedback amplifier the tube capacity is

identified with C alone and the sum C + C is necessarily much greater.

This economy of capacity with the improved performance which it makes

possible is one of the principal advantages of cathode feedback in a high-

frequency design.

The suggestion that a practical input or output circuit design should be

less selective than the illustrative circuit described in the preceding section

is made in part to take account of the effects of dissipation, which were

previously ignored. In view of the low value to which R3 drops in

Fig. 16.37, it is clear that any substantial resistance associated with the final

inductance in the circuit will consume a large fraction of the power which is

* In this particular amplifier the volume performance requirement extends only to

2 mc but an extremely accurate external gain characteristic is called for throughout a

high frequency region extending to 3 mc. The use of as many as three elements in

this part of the network is dictated by the necessity of making the external gain at high

frequencies very accurate rather than by the shaping required below 2 mc, where

volume performance and external gain considerations are jointly effective.



INPUT AND OUTPUT CIRCUIT DESIGN 401

nominally transmitted through the structure. This is particularly impor-

tant in Fig. 16.43 where the inductance represents the transformer leakage

and has a relatively low Q. It is less serious in a circuit of the type shown

by Fig. 16.44, in which the final inductance is a separate coil and can be

assigned a much higher Q.

The other reason for attempting to secure a design without too great

selectivity has to do with the loop transmission characteristic of the circuit.

Within the useful band the loop

transmission characteristic is com-

pletely fixed by the external gain

and volume performance require-

ments since it depends only upon

the impedances Z\ and Z2 of Fig.

16.34, both of which are fixed by

these requirements. Moreover,

the loop transmission changes from

zero loss at zero frequency to a

loss represented by the fraction

1/(C+ C ) at infinite frequency.

If the ratio of C to C is fixed this must correspond, in accordance with

(13-19) of Chapter XIII, to a certain definite phase area. Since the

phase characteristic within the useful band is fixed the phase area outside

the useful band is also fixed. For practical purposes, however, it makes a

great difference how this area occurs. The solid line in Fig. 16.45, for ex-

ample, shows the loop phase shift

exhibited by the illustrative design

of the preceding section. The cor-

responding gain characteristic is

shown by Fig. 16.46. In this in-

stance the circuit is so selective

that the resistance component of

the high-side impedance of the

transformer becomes negligible and

both impedances in the loop poten-

tiometer reduce to capacity react-

ances at frequencies slightly beyond

the useful band. Since a capacity

potentiometer cannot physically produce a phase shift this means that the

phase area is packed into a narrow region just beyond the useful band and

the characteristic must rise to a high peak. It is theoretically possible to

compensate for the presence of such a peak in the design of one of the

other parts of the feedback loop, such as an interstage network, so that

4.0 2.0

16

db

=—=-.

IV

.Fig. 16.46
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the overall loop characteristic will reduce to one of the smoothly varying

curves described in a later chapter. It is evident, however, that such a

compensation must at least be exceedingly awkward, especially when ac-

count is taken of the fact that both input and output circuits must be

considered. The overall loop design is much simplified if the circuits are

made less selective so that the phase area can be spread over a broader

region, as illustrated roughly by the broken line in Fig. 16.45.



CHAPTER XVII

Application of General Theorems to

Interstage Network Design

17.1. Introduction

This chapter continues the discussion of the design of particular parts

of a complete amplifier which was begun in the preceding chapter. The
particular circuits treated here are interstage networks. As in the preced-

ing chapter the material is actually intended merely as an illustration

of the uses of the contour integral formulae and does not pretend to be

comprehensive.

In a feedback amplifier the most satisfactory interstage networks are

ordinarily two-terminal structures, that is, simple shunt impedances. A
four-terminal interstage, containing a series impedance interpolated

between the plate capacity of one tube and the grid capacity of the follow-

ing tube usually produces a phase shift which is intolerably great in a feed-

back loop unless the series impedance is so small that the circuit does not

differ materially from a two-terminal network. Most of the analysis is

directed at the examination of two-terminal interstages in terms of one

principal theorem which relates the gain of the interstage* in the useful band
and its phase shift beyond the band to the parasitic capacity in the circuit.

After the development of the theorem, the cases in which we are interested

only in the gain characteristic, the phase characteristic being immaterial,

and those in which requirements must be placed on both gain and phase,

are taken up in order. The chapter closes with a brief and rather incom-

plete account of the corresponding limitations which may be expected to

exist in four-terminal interstages, the gain characteristic alone being

considered.

17.2. General Theorems on Two-Terminal Interstages

The two-terminal interstage is shown by Fig. 17.1. The plate is repre-

sented as a current source, in accordance with the nodal analysis method

* Strictly speaking, of course, the word " gain " should apply to a complete am-
plifier stage including both tube and interstage. Thus, in the notation of Fig. 17.1

the stage gain and phase are given by log Ei/Ea = log GmZ, where Gm = 7i/£ is

the transconductance of the first tube. Since Gm is merely a prescribed constant,

however, calculations will normally be based on log Z alone, as a matter of brevity.

433
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described in Chapter I. This places the plate resistance Rp effectively

in parallel with the rest of the interstage, just as Y3 appears in parallel

with Y5 in Fig. 1.9. The grid resistance is represented by Rg in Fig. 17.1

and the total parasitic capacity by C. The elements introduced into the
interstage by the design, exclusive of such elements as blocking condensers,

effective only at very low frequencies, are represented by Z'. Together
with Rp , Rg and C they form the total effective interstage impedance Z.
The grid and plate resistances are included here for the sake of com-

pleteness, but they will ordinarily be omitted
in the interstage configurations shown later,

since in most broad-band circuits the tubes

are pentodes, in which both Rp and Rg are

very high impedances in comparison with the

rest of the interstage. The general theorems
in the chapter remain valid even when Rp

and Rg are significant, but the calculations on maximum gain possibil-

ities of interstages should be modified, since they depend upon the

assumption that the interstage can be assigned a purely reactive charac-

teristic outside the frequency range of interest.

The simplest result which can be established for circuits of the type
shown by Fig. 17.1 is one relating the gain obtained from the actual inter-

stage to that which would be obtained if we removed Z' entirely, except

perhaps for infinite inductance choke coils to supply battery power to the

tubes. It is given by the

Theorem: The average gain of a physical interstage network including

a prescribed parasitic capacity C over the complete fre-

quency spectrum is not greater than that which would be
obtained if the network were composed of the capacity C
alone.

To prove the theorem it is merely necessary to set 6 = log iwCZ. Near
infinite frequency we can write

Z = r^ + ^ + -§ + (17-D
tut. co ca

from which is given to a first approximation as

= log 1 +*—=/— • (17-2)
L <o J u

If we identify this with the which appears in equation (13-6) of Chap-
ter XIII, therefore, we have Ax = 0; Bx = kx C. The result in Chap-
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ter XIII thus gives

/ log
I

icaCZ
|
dia = — — k\C. (17-3)

But the integrand in the left-hand side is obviously the difference between

the gain obtained from the actual interstage impedance Z and that which

would be obtained if we were dealing with C alone. On the right-hand side

k\ cannot be negative since we can readily show from (17-1) that it is

1/C2 times the conductance of the network at infinite frequency. Thus

the average gain of the actual interstage cannot be greater than the gain

obtained from C alone and will be equal to the gain obtained from C only if

the infinite frequency conductance is zero.

As an example of the theorem let it be supposed that the interstage takes

the form shown by Fig. 17.2. The corresponding gain characteristic is

shown by the solid line Curve I of Fig. 17.3, the gain which would be

Fig. 17.2 Fig. 17.3

obtained from the capacity alone being represented by the broken line. In

this instance the infinite frequency conductance is zero and the average

height of the two curves is the same. If we remove the coil from the net-

work, however, the gain drops to the position shown by Curve II, below the

capacity gain.

The weakness of this result is, of course, the fact that it involves the

interstage gain over the complete frequency spectrum. In a practical

situation we are ordinarily interested in the gain over a prescribed finite

band, which we can suppose, for the sake of definiteness, to extend from

zero to coo- This problem can be studied by using equation (13-36) rather

than (13-6) in Chapter XIII. It is also convenient, although not neces-

sary, to suppose that the expression log iuCZ, which has previously been

used for 0, is replaced by log J (Vaj — co
2 + iu)CZ. Since it will be
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shown later that the admittance of the interstage giving the maximum
possible flat gain between zero and w is ^(Vcoo — co

2 + i<a)C this change
is equivalent to using this interstage rather than the bare capacity C as the

standard against which Z is measured. So far as their behavior at infinite

frequency is concerned the two 0's are evidently identical.

If we use the new and substitute directly in (13-36) of Chapter XIII
we secure

where B in the right-hand side is retained, for brevity, as the imaginary
component of B. The expression can be somewhat simplified by writing

log Z = a + i(i. This allows us to replace B by tt/2 + 0. On the left-

hand side of the equation the numerator of the integrand becomes

a + log^
|
Viip — co

2 + ico
|
C, which can also be written as a + log (o C/2),

since the absolute value of Vuo — co
2 + too in the range of integration is

<a . This allows (17-4) to be written as

r° j_ r° log ("o^/2) , r" t/2 + ff ,

I — =aoj + I
—

. =a<ji = — I — =dii3
Jo Vl - JJul J Vl - u2/J J» Vu2/J ~ 1

(17-5)

or, if we integrate the second term explicitly, as

fiv^m'^+i v^f=iK^)
=
i

log
^c' (17-6)

Equation (17-6) is the principal result of the chapter. Its physical

significance can be understood most easily if we suppose for the moment
that the second integral is ignored. Then the equation expresses a relation

between the gain a in the useful band and the parasitic capacity C. If

the relative gains at various frequencies in the useful band are prescribed

we can readily determine from the equation what the absolute level of gain

may be.

If we consider now the second integral we notice that /?, since it repre-

sents the phase angle of Z, can be expected to approach —ir/2 at high

frequencies as Z degenerates into the parasitic capacity C. We cannot,

however, assign @ a larger negative value than — x/2 since Z cannot have a

negative resistance component. Thus the second integral in (17-6) is

always positive or zero and the assumption made previously, that it can be

ignored in evaluating the gain, represents the optimum case. We may also
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notice that the optimum can be realized only if the resistance component of

Z is zero outside the band, so that the interstage network giving maximum

absolute gain is always an ideally selective filter of some description, no

matter how the relative gains at various points in the useful band are pre-

scribed.* In a non-feedback amplifier the complexity of the network re-

quired to give a reasonable approximation to an ideal filter is the most

important design consideration. The situation here is broadly similar to

that described for input and output circuits in the previous chapter. In a

feedback amplifier, on the other hand, it may be necessary to impose a

definite requirement on the phase angle of the interstage impedance over at

least part of the range beyond the useful band in order to secure a stable

circuit. In this event the second integral can be used to determine how

much the gain in the useful band must be reduced in order to provide any

given margin between the actual phase angle of the network and the pure

capacitance phase which would be exhibited by a maximum gain structure.

These calculations are described in more detail in succeeding sections.

This discussion implies one further corollary, which is of some incidental

interest in connection with the theorem first developed. Since an inter-

stage giving maximum gain in the useful band has a phase angle of — ir/l

outside the band, it can have no appreciable conductance component in this

region. With the help of the earlier analysis we can consequently state

the

Theorem: The average gain of a two-terminal interstage network

including a prescribed parasitic capacity C over the com-

plete frequency spectrum is always the same if the network

is of the type giving the maximum absolute level of gain in a

prescribed finite band, without regard to the variation of the

gain characteristic over the prescribed band, and is equal to

the average gain which would be obtained if the network

were composed of C alone.

In other words if we are dealing with an interstage network of maximum
gain type we have at our disposal a fixed fund of what may be called gain

area between zero frequency and some arbitrarily chosen high-frequency

point at which the network may be regarded as degenerating into the para-

sitic capacity. Shaping the characteristic in various ways in the useful

band redistributes this area without changing its amount.f

* This, of course, assumes also that the grid and plate conductances are negligible.

Cf. the discussion in connection with Fig. 17.1.

f Allowance must, however, be made for the fact that area changes may occur just

outside the useful band as well as within it. See the discussion of this point given

later.
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17.3. Two-Terminal Interstages with Maximum Constant Gain

As an illustration of the theorem just established we will consider the

design of an interstage network having the largest possible constant gain

over the range between zero and o> . The solution has been known empiri-

cally for many years* but the analysis is nevertheless presented in detail

because of the theoretical interest of the subject.

If we neglect the second integral in (17-6) and replace a in the first inte-

gral by the constant cxq the equation becomes

f!vr?7m d
(^)

=
l
los ^c' (17~7)

But since the left-hand side can be integrated directly to give (ir/2)ao the

obtainable gain can be written as

2
<*o = log—-• (17-8)

oi C

We notice that if the capacity were alone in the circuit the gain at the edge

of the band would be log l/co C. The maximum constant gain is therefore

just 6 db higher than the gain represented by the capacity impedance at the

limiting frequency.

The phase angle of the interstage impedance must, of course, be — w/2 at

frequencies outside the useful band if the maximum gain within the band is

to be realized. With the gain characteristic inside the band and the phase

characteristic beyond the band thus determined the rest of the complete

interstage characteristic can be found by the formula which appears as

equation (14—33) of Chapter XIV. The computation is simplified if we

notice that the prescribed gain, log 2/co C, in the useful band can serve

physically only as a reference which determines the absolute level of gain

in the final characteristic. We can suppose it to be zero instead if we make
a corresponding correction in the gain computed for the region outside the

useful band. This modification allows the first integral in the equation to

* A published account is given by H. A. Wheeler {Proc. of the I.R.E., July, 1939).

The potentialities of the full-shunt terminated filter as a two-terminal interstage

were, however, familiar to filter specialists, although they were apparently not widely

known to amplifier designers in general, at a much earlier date. To the best of the

author's knowledge, the original discovery is due to his colleague Mr. E. L. Norton

and was made some time prior to 1930.

Wheeler's paper also includes a discussion of the application of the filter structure

to four-terminal interstages. This is described later in Section 17.8.

Filter-type interstages have also been described by W. S. Percival (Brit. Pat.

Nos. 460,562 and 475,490, filed July 24, 1935, and Feb. 21, 1936).
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be omitted. If we substitute = -w/2 in the second integral the result-

ing formulae for a and in the portions of the spectrum in which they are

not directly specified appear as

coc dm /3(wc )— —= ~ — -' <0C < "0

V«7«g - i <* - <** Vi- «?/«§
(17-9)

-[«(««)- log (2/mqC)]
= = » o>c > o>o-

V«e7«2 - i

Equation (17-9) is easily integrated by means of the substitution

w2/«o = 1/(1 — x2 ). If we consider in particular the formula for /3 this

gives

^(Wc) = --=^= fTl + V^^T
1

^ «.<-o, (17-W)
V <oq - wf •'o L "o — «« J _ .

which can be evaluated by standard methods as

PM = -tan"1 "'
2
= -sin-1 * • (17-11)

Vco2
,
- co

2 «o

Similarly,* the result for a appears as

2
«(w6) = log—- — coth x

«oC V^2 ---2
coc — COq

(17-12)

= log

2

co C

V
2W
i _ 1 -l_ —
2 * r

C0q Wo

The complete gain and phasef characteristics of the interstage, as deter-

mined by these equations, are shown by the solid lines in Figs. 17.4 and

* Although the integrals for /3 and for a are formally identical, account must be

taken of the fact that coc is less than co in the first case and greater than coo in the

second. The pole at co = co c in the integrand of (17-9) consequently falls outside the

range of integration when we are studying /3 but not when we are studying a. In

accordance with the discussion in Chapter XIV the " principal value " of the integral

must be taken in the second case. In other words, in evaluating a the integral from

coo to oo in (17-9) must be understood as signifying the sum of two integrals, one

running from co to coc — s and the other from coc + e to »
. The result (17-12)

follows readily with this understanding.

t The negative of the phase characteristic in (17-11) is plotted to correspond with

the usual convention that a shunt capacity phase is positive.
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17.5. The broken line in Fig. 17.4 gives the gain characteristic which
would be obtained from the capacity alone. With the logarithmic fre-

quency scale employed in the figures this gain characteristic is a straight

line and has a slope of 6 db per octave. The actual gain characteristic

merges with this line at high frequencies, as we can see by noticing that
(17-12) reduces to log l/cocC when «c is large, but it rises more rapidly near

-10

-20

N.

X
N.

^
^ V

x ^6dkJ\
"s. T \

db xvX
\\

.
sCvv

vs.
S>v
^v

top Uzloq^/OtfVs^\
Fig. 17.4

the edge of the band to give the 6 db gain advantage at the band edge

required by (17-8). In terms of the general relationship between phase

shift and attenuation slope given by (14-11) of Chapter XIV the increased

slope of the actual characteristic in comparison with the capacity charac-

teristic just beyond the useful band and the decreased slope within the use-

ful band can be looked upon as compensatory adjustments which together

Fig. 17.5

maintain the phase characteristic at its original value throughout the range

in which the interstage is cutting off. The characteristics shown by
Figs. 17.4 and 17.5 should be examined with some care since they will also

be used, except for a change in scale, as the basis of the general method of

overall feedback loop design described in the next chapter.

A physical circuit which will represent these characteristics can be

obtained most easily if it is noticed that the parts of a and P which were
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specified originally can be combined with the results in (17-11) and (17-12)

to give the complete interstage gain and phase shift by the single formula

a -\- ij3 = log

2

W C

co
2

CO

The corresponding interstage impedance or admittance is

(17-13)

z = i = -^-
Y co Cu 2

O)

2 >R . OlC
(17-14)

If we deal in particular with the admittance

COoC

2 \ OJQ
Y = A/1 - -2+t—

\ O) Z

this expression can readily be identified with a full-shunt terminated low-

pass filter in which the parasitic capacity C forms the final shunt branch.

The structure is illustrated by Fig. 17.6. The network in the box repre-

sents an ideal low-pass structure of con-

stant k type terminated at the orthodox

mid-shunt junction and with cut-off" at

to = co - It supplies the admittance

^cooCV 1 — co
2
/co<). The final shunt

branch is equal to half the parasitic ca-

pacity. The remaining half of the capac-

ity appears outside the box and serves to pIG u 6

build out the termination from mid-shunt

to full-shunt. The fact that half the capacity is incorporated as part of

the filter proper, whose admittance disappears at the cut-off is, of course, the

reason why the gain of the interstage is 6 db greater than the gain which

would be obtained from C alone at this frequency.

For practical purposes the impedance of the ideal structure of Fig. 17.6

can be approximated by a finite network giving a reasonably accurate

match to the terminating resistance 2/u> C Methods of constructing such

networks are described in filter theory and need not be dealt with here. As
a matter of completeness, however, a list of some special structures, graded

in order of complexity, is shown by Fig. 17.7. In each circuit the element

values are stated in terms of the frequency and impedance units co and

2/coqC. The two final capacities, each equal to 1 in these units, are, of
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course, to be identified with the capacities C/2 in Fig. 17.6. The structure

specified by the first set of element values in Fig. 17.7C and the structures

of Fig. 17.7B and 17.7E are conventional filter networks in which the match

r:i.o itrvo

(1)1-80
d'h.70

-vftAAJLr-

rn.o ho 1.0" 1.0 -r

(1) 0.75

1.335

1.0

==1.0 ±Z\X>

(m)i.6o
(.nm.50
-<MSUU-

•1.067

10-600

(BD2.000

(10.9314

0.600
0.600

M.0

0.2989

to the final terminating resistance is obtained by terminations respectively

of the single w-derived and double ra-derived* types. The other structures

were obtained by more or less unorthodox cut-and-try methods.

The gain and phase curves for the structures of Figs. \7.7A and 17.75

are shown by Fig. 17.8. Curves I and I' refer to the successive sets of ele-

* See O. J. Zobel, " Extensions to the Theory and Design of Wave Filters,"

B.S.T.J., April, 1931.
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ment values in Fig. Y1.1A and Curve II, to Fig. 17.75. The gain and

phase curves for the remaining structures are shown in Fig. 17.9. Curves

80

60

40

20

to/O

deq.
^

Tyy
V

/ Ay
'/

*r^^

y^^
0.2 0.4 0-6

Fig. 17.8

0.8 1.0 1.2

III and IV refer respectively to the structures of Figs. 17.7C and 17.7D.

The performance of the structure of Fig. 17'.IE, which matches the ideal

too closely to be shown by a separate curve, is indicated by the crosses.
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The structures can also be used to represent a mid-series image imped-
ance by removing the parasitic capacity and one unit of the final series

6
db JZ

. y\.

5

*" »^" i

1
/i

1

*T

\

inductance. This is occasionally useful in other design situations. Exam-
ples are found in the preceding chapter and will appear again later in the

present chapter. The reason that filter impedances appear so frequently
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in a theoretical discussion like the present one is, of course, the fact that

theoretical problems are frequently specified discontinuously in different

ranges and require impedances whose character changes abruptly at some

given point for their solution. For practical purposes the theoretically

abrupt transition is to be regarded as the limit of a series of continuous but

increasingly rapid transitions of the type illustrated by Figs. 17.8 and 17.9.

17.4. Two-Terminal Interstages with Maximum Variable Gain

If the gain in the useful band must be a function of frequency rather than

a constant the analysis is naturally somewhat more complicated but it

follows the same general pattern. For practical purposes the most impor-

tant question is that of determining how high the varying gain characteris-

tic can be placed, in comparison with a corresponding constant gain

characteristic, when the parasitic capacity is fixed. This can be examined

by replacing the variable of integration <a/u in the first integral of (17-6)

by sin tf>. Upon omitting the second integral, to give the maximum gain

condition, the result is

it/2

a^-^log-^* (17-15)
'o

which is obviously equivalent to the

Theorem: If a two-terminal interstage including a prescribed parasitic

capacity has the maximum absolute level of gain between

zero and some fixed point to the area under its gain charac-

teristic when plotted against
<t>
= sin

-1
co/co is a constant,

whatever the relative gains at various points in the pre-

scribed band may be.

Zero gain isThe application of this relation is illustrated by Fig. 17.10.

taken for convenience as log 1/cooC

The rectangle labelled I represents the

plot of gain against <f>
when the interstage

is of the maximum constant gain type

described in the preceding section.

Curves II and III represent two extreme

cases of interstages with tilted character-

istics. In the first the interstage is

merely the parasitic capacity and this

characteristic if drawn on log frequency

paper would consequently have a con-

stant downward slope of 6 db per octave. Curve III represents the in-

verse situation, in which the gain has a constant upward slope of 6 db

Fig. 17.10
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per octave. This characteristic corresponds to the expression

a + i0 = log

2 V-

1

w 2

.u C
(17-16)

We notice that the quantity (u C/2)Vl - o>
2
/«>o + i(uC/2) - *'(«oC/4w),

which is evidently the interstage admittance, is the same as the denomina-
tor of the final expression in (17-14) except for the additional term
— /'(<aoC/4w). The interstage can therefore be obtained by adding a paral-

lel inductance to a " constant gain " interstage, as illustrated by Fig. 17.11.

It is worth noticing also that an amplifier containing two " constant gain
"

interstages can be replaced by one containing one interstage each of the
types represented by Curves II and III, with an economy of elements,

provided the changes in impedance and signal level within the amplifier

can be tolerated. The final curve, labelled IV in Fig. 17.10, represents a

tilted interstage of the type commonly encountered in practice. Its gain

characteristic on an arithmetic frequency scale is shown by Fig. 17.12.

Fig. 17.11 Fig. 17.12

In accordance with the theorem developed earlier in this section the

areas under all the curves in Fig. 17.10 must be the same. If a tilted inter-

stage is to be physically realizable it must in addition meet the requirement

that its phase angle in the useful band will not exceed the limits ±x/2.
Otherwise, of course, it cannot be constructed without the use of a negative

resistance. No difficulty is to be anticipated here if the gain characteristic

varies only moderately, like that represented by Curve IV in Fig. 17.10,

but the phase characteristic may become too great if very large variations

are attempted. Curves II and III were described as " extreme " when they
were first introduced because their associated phase shifts just reach the
limit. They can thus be taken as representing roughly the limit of what
can be attained if we consider the variation of the gain characteristic over
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the complete band, but sharper variations over a small portion of the band

are of course permissible.

The transformation from an arithmetic frequency scale to the </> scale has

as its chief effect a spreading out or accentuation of the region near the

edge of the useful band. The reason for emphasizing this portion of the

gain characteristic can be understood most easily if it is recalled from one

of the earlier theorems in the chapter that when the gain characteristic is

plotted on an arithmetic frequency scale the total gain area over the com-

plete frequency spectrum is the same for any maximum gain structure. As

long as we are dealing with the characteristic only at frequencies well below

the edge of the band this principle allows us to rearrange the gain area as

we see fit, without penalty. Changes in the characteristic near the edge of

the band, on the other hand, imply concomitant changes in gain area just

beyond the useful band which must be allowed for even though they are

not directly part of the useful char-

acteristic. This is illustrated by Fig.

17.13, which represents the capacity

gain and constant gain characteris-

tic of Fig. 17.4 redrawn on an arith-

metic frequency scale. In accordance

with the gain area theorem, area I is

equal to the sum of areas II and III.

Area III is not directly useful but it

cannot be dispensed with if area II is

to exist because the gain character-

istic cannot drop off beyond the band
more rapidly than it does in the figure without producing a phase shift

greater than ir/2. The additional weighting of the gain characteristic just

below co which the transformation to the <t> scale produces is evidently an
expression of the existence of this necessary surplus area beyond ca .

The design of a tilted interstage of maximum gain type may be obtained
by following broadly the procedure described previously. With a deter-

mined inside the useful band and /? beyond it, it is first necessary to compute
the rest of the characteristic from (14-33) of Chapter XIV, much as was
done in connection with (17-9) of the present chapter except that both inte-

grals of the general formula must be considered. A rough computation
may be sufficient at this step. The parasitic capacity is next subtracted
from the complete interstage admittance and the remainder simulated by
cut-and-try methods. The basic constituent of the simulating network
will, of course, be a filter image impedance. Analogous problems were
discussed in connection with Fig. 14.19 of Chapter XIV and Fig. 16.11 of
Chapter XVI.

Fig. 17.13
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17.5. Explicit Formulafor Band-Pass Interstages

In confining the discussion to interstages of " low-pass " type, it is, of

course, assumed that the solution advanced will be applied to broad-band

and to symmetrical narrow-band problems by means of the transformations

described in Chapter X. As a matter of completeness, however, the

general formula which applies explicitly to both symmetrical and unsym-
metrical band-pass structures will also be included. It appears as

K! + K2 + #3 = -
n
log-

2-— >

where

_ /*"* _co adco

J„
1

coiw2 vV/co? - 1 Vl — o?/oi\

K,

K2 = f^-, "*-')* (17-17)
J "1^2 V 1 — a>

2
/a>? Vl - co

2
/co2

Wl"2 Vol2
/0i\ - 1 VV/cof; - 1

where «i and W2 are the edges of the useful band and the general significance

of the terms is the same as that of those appearing in the corresponding

expression in (17-6). To study the maximum gain condition we omit the

second and third integrals on the assumption that the interstage phase angle

is +ir/2, representing an inductive reactance, below the band, and — x/2,

representing a capacitative reactance, above it. The remaining integral is

exactly similar to the gain integral in the low-pass case except that the

weighting function 1/v 1 — co
2
/o>o, which accentuates the importance of the

gain characteristic near w , is replaced by co/coi&>2V co
2
/cof — IV 1 — ui

2
/o4,

which emphasizes both edges of the band.

17.6. Two-Terminal Interstages with Specified Phase Margins

We have still to examine the situation in which the phase angle of the

interstage network cannot be as great as 90° everywhere beyond the edge

of the useful band, so that it is not possible to ignore the second integral

in (17-6). The difference, fi + x/2 in (17-6), between the actual inter-

stage phase shift and its limiting value will be called the interstage phase

margin. Problems of this sort are particularly likely to arise in feedback

amplifier design, where it may be necessary to restrict the phase angles of
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the interstage networks in certain frequency ranges in order to insure a

stable circuit. The circumstances in which phase control of the interstage

networks, rather than the feedback circuit, is necessary are described in

the next chapter. They relate broadly to the amount of final gain re-

quired from the amplifier. For our present purposes we may imagine, as

the design situation, that the input and output circuits and the feedback

circuit have already been designed, that their contributions to the trans-

mission around the overall feedback loop are known, that we have estab-

lished what the final loop phase characteristic should be to secure a stable

amplifier with a specified margin against singing, and that the relative

feedbacks at various frequencies in the useful band have been specified.

The reasons for supposing that the design situation takes this form and

the details of the construction of the phase requirement will be better

understood from the discussion in the next chapter. With the data as

assumed, the phase characteristic of the interstage networks beyond the

useful band and their relative gains within the useful band can be computed.

What remains is the determination of networks meeting these require-

ments with as high an absolute level of gain in the useful band as is per-

missible with the given interstage capacities.*

This design problem can be attacked most directly if we begin by using

(17-6) to determine how much gain must be sacrificed to permit the inter-

stage to have the prescribed phase characteristic. As we have already

noticed, the sacrifice depends upon the fact that the second integral in

(17-6) must be positive unless f}
= —ir/2 at every frequency outside the

useful band and serves, with a given C, to reduce the value which can be

assigned to the first integral. To evaluate it, let the variable co/&>o in the

second integral be replaced by <j> = sin
-1

«oAo. If we retain the earlier

substitution <j> = sin
-1

co/coo for the first integral this allows the complete

equation to be rewritten as

f
2

ad++ f
2

T- (l + js)l d*' = - log -A. . (17_18)
Jo Jo L^o \2 /J I uQC

Thus the reduction in gain can be obtained by plotting the function

(co/w ) (t/2 + P) against <j>' . In view of the similarity between the two

* If the design method in the next chapter is followed the absolute level of gain in

the final interstage can also be determined directly from the preliminary computations

which govern the general choice of circuit arrangements and phase characteristics.

The independent determination described here is nevertheless useful since it can

usually be made much more accurately than the preliminary computations, for which

the data may be approximations or estimates based on scattered measurements.
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angle scales the result can be conveniently expressed as the

Theorem: If a two-terminal interstage including a specified shunt

capacity has a specified phase angle /3 above a certain point

too the reduction of the absolute level of gain, in nepers,

below coo from the theoretical maximum is equal to the

average height, in radians, of the plot of (co/co ) (tt/2 + /3)

against <j> — sin"
1

co /co.

If a complete multi-stage ix circuit, rather than a single interstage, is under

consideration, we can evidently make a single computation for the whole

circuit and allocate the total gain reduction among the individual inter-

stages in any way which appears likely to give a convenient design.

It will be noticed that the transformation to the 4>' scale tends to accentu-

ate the importance of the phase characteristic just beyond coo. This

phenomenon is similar to that which was found for the transformation to

the c/> scale in the gain analysis and occurs for the same general reason. It

will be recalled that in the gain analysis the gain area law applied to the

response over the complete frequency spectrum, but that in dealing with the

response over a limited region it was necessary to allow for the fact that a

change in the gain characteristic near the edge of the band produced area

changes outside as well as inside the band. In the present situation the

response over the complete spectrum is governed in a similar way by the

phase area law developed originally as equation (13-19) of Chapter XIII.

When co is large the second integral in (17-6) reduces to

f(l + P)^-f(l + P)^
where u = log co, and expresses this law explicitly. It may be remembered

that Chapter XIII also included a discussion, based on the phase area law,

of the use of trap circuits to control interstage phase characteristics at fre-

quencies remote from the band. If the phase control is exerted near the

band the phase area law in a broad sense still applies, but a portion of the

total area change occurs within the useful band and cannot be included

directly in an integration which begins at the band edge. Exactly as in the

gain analysis the transformation to the 4> scale expresses this effect indi-

rectly by a relative increase in the importance assigned to the phase charac-

teristic just beyond the useful band.

When the absolute level of gain in the useful band has been established

the rest of the design can be obtained by following a routine somewhat

similar to that used in several previous problems. It is simplest to describe

the procedure in terms of an example. Since phase control at high fre-

quencies through the use of a trap circuit has already been described in
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Chapter XIII it will be assumed here that the phase control is to extend

over a range bordering on the useful band. For illustrative purposes it will

be supposed that the phase shift is to be 60° for one octave beyond the use-

ful band and a slanting line between 60° and 90° for an additional octave, as

shown by Fig. 17.14. It will also be supposed that the gain in the useful

band is to be flat.

cj. 2t>„ 40,

u=loq D/Ua

Fig. 17.14

The design begins with the plot of (co/«o) (ir/2 + 13) against tf>'. Using the

& of Fig. 17.14, this leads to the result shown by Fig. 17.15. The average

height of the curve is about 32°, or 0.56 radians. It follows from (17-18)

that the absolute level of gain in the useful band must be 0.56 nepers, or 4.9

db, less than that of a maximum gain interstage. For a flat characteristic,

in other words, the gain in the useful band will be 1.1 db above log l/oi C.

We next compute the complete interstage characteristic from the known
components of gain and phase. It is simplest to suppose initially that the

phase characteristic is 60° at all frequencies above the useful band. With
this assumption the situation is evidently the same as that treated by



422 NETWORK ANALYSIS Chap. 17

equations (17-9) through (17-13) except that the specified phase is 60°

rather than 90° and the gain level in the useful band is somewhat different.

We can consequently obtain the complete gain and phase characteristics by

at

o

-10

-15

0.2 0.4 o.s o.'a 1.0

Fig. 17.16

multiplying (17-13) by § and adding a constant to give the correct low-

frequency gain. This leads to the results shown by the broken lines in

Figs. 17.16 and 17.17. The reference gain in Fig. 17.16 is taken as

deq.

90

80

60

40

M tfi a* 0.6 0.8 i.O

Fig. 17.17

b/to.

~4J) &0 &0 102.0

log l/to Cand the straight solid line represents the capacity gain, with which

the actual characteristic must eventually merge.

The fact that the interstage phase angle is not actually equal to 60° at
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all frequencies above wo can be most easily taken into account by intro-

ducing the error as B in equation (14—33) of Chapter XIV and evaluating

the result by means of the charts in Chapter XV. It will be recalled

that equation (14-33) is merely an expression of the standard relation

between the real and imaginary components of network functions when
the components have the special form indicated by (14—32). In this

problem the " real component " with which we have to deal is evidently the

difference between the actual interstage phase beyond coo and 60°, divided by

Vtt2/&>o — 1. This function is shown by Curve I in Fig. 17.18. With the

12

deq.

10

8

6

4
TZI

2

I

Z

-4 • ie\

\is:

U)/Ua

0.4 0.6 0* 1-0 51) 4.0 6.0 10.0

Fig. 17.18

ZOJO

help of the charts in Chapter XV the corresponding imaginary component
is found and appears as Curve II in the figure. But the imaginary com-

ponent is equal to B/Vl — aP/wl for co < w and to —A/\Z<j32/w% — 1 for

w > coq. Thus from Curve II we can secure Curves III and IV represent-

ing B and A themselves in these two ranges. These last curves are evi-

dently the corrections which must be applied to the preliminary characteris-

tics for the interstage gain and phase in order to take account of the

departure of the required phase angle from 60° at high frequencies. When
the corrections are made the complete interstage characteristics take the

form shown by the solid lines in Figs. 17.16 and 17.17.

After this point is reached the design can be finished by following the
routine described for a number of previous examples. We begin by com-
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puting from Figs. 17.16 and 17.17 what the impedance of the interstage,

exclusive of the parasitic capacity, must be. The result is shown by

Fig. 17.19, where the unit of impedance is taken as l/co C. The resistance

component is next matched with a minimum reactance network. In this

example the principal portion of the resistance is furnished by a mid-shunt

low-pass filter image impedance of the constant k type, with cut-off at

w/ctfo = 4, plus a parallel capacity.* The structure is shown by network A

0.4 o.e o.8 i.o

Fig. 17.19

1

in Fig. 17.20. The additional peak of resistance near &>o is provided by the

damped anti-resonant network shown as network B in the figure. The
filter impedance is used in the first network principally to provide a very

accurate match to the assumed charac-

teristics, for illustrative purposes. In a

practical design a much simpler structure,

such as a resistance in parallel with a

capacity, should suffice.

The design is completed by adding the

inductance L in Fig. 17.20 to make up
the difference between the reactance fur-

nished by networks A and B and the re-

actance specified in Fig. 17.19. The
reasons for expecting that the reactance

match can always be obtained and other

general comments on the process were set

forth in connection with the discussion of

similar problems in the preceding chapter

and need not be reviewed here. The final

, .575/6J

l-v\

i i

ilMUo

IP
I' ii

m^^

T

-- /'"a

Fig. 17.20

interstage gain and phase characteristics with the element values given in

* The additional capacity is almost the right value to change the termination from

mid-shunt to full-shunt, so that the resistance component is nearly, although not

exactly, the same as a mid-series constant k image impedance.
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Fig. 17.20 are shown by Fig. 17.21. The characteristics of Figs. 17.16 and

17.17 are indicated by the broken lines.

0.4 0.6 0.8 1.0 2.0

Fig. 17.21

/3(deq)
90

17.7. Interstage Networks of Simple Types

The interstage design technique described thus far has been directed

primarily at two extreme problems. In the first, a close approximation to

maximum gain in the useful band was sought, while in the second a pre-

scribed relative gain characteristic within the band was combined with a

prescribed phase margin beyond it. In either case, the problem was con-

ceived as a purely theoretical one, with no restriction on the number of ele-

ments employed, and the resulting structures turn out, in general, to be

rather complicated.

In a practical design it is, of course, usually possible to rely upon much

simpler networks. The extent of the permissible simplification depends,

in general, both upon the amplifier requirements and upon the skill of the

designer. The controlling relation is the fact that in any particular ampli-

fier the integral of the sum of the interstage phase margins, plotted against

<j>', is a fixed quantity which can be determined from the general arrange-

ment of the circuit and the required final gain. If the sum is zero the phys-

ical limit on the performance of the amplifier is one of available /* circuit

gain. The interstages theoretically should be maximum gain structures

and any departures from the maximum gain condition due to network

simplifications are reflected directly in diminished feedback. If the inte-

gral is not zero, on the other hand, the situation is more flexible. For

example, as long as the integral is fixed the frequency variation of the total ft

circuit phase margin can usually be altered within wide limits by adjust-

ments of the other parts of the circuit, while within the n circuit itself the

phase margin can, of course, be allocated arbitrarily to the several inter-
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Fig. 17.22

stages. The design problem thus becomes one of splitting up the integral

in such a way that the individual pieces correspond to especially simple

Structures, The technique described in the preceding section appears as a
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last resort when the splitting-up process is not completely successful.

These relations are described in more detail in the next chapter and are

merely summarized here.

When the interstages are very simple they are most easily designed

directly by cut-and-try methods. As a guide to the process, however, a list

of configurations is given in Fig. 17.22. The list gives all the structures of

four elements, including the parasitic capacity, which can be expected to be

appropriate for amplifier designs carried out on the low-pass equivalent

basis.* The accompanying curves attempt to show the types of charac-

teristics for which each structure is particularly suitable. For example, the

first configuration is appropriate if the interstage must give a large and

fairly uniform phase margin over a broad range beyond the useful band.

The large phase margin is obtained, however, at the cost of a low and not

very flat gain within the useful band. The second configuration allows the

gain to be made higher and reasonably flat, or even upward tilting, but the

phase margin becomes relatively less at high frequencies. The third con-

figuration is convenient if the interstage should exhibit either a flat or a

tilted gain characteristic within the useful band together with a modest

phase margin over an extended high-frequency region.

The diversity of characteristics obtainable from these three networks is

only that which may be estimated by physical inspection. The fourth

configuration can be used only when a high-frequency phase margin is

unimportant, but within this limitation it can exhibit a considerable variety

of characteristics. A family of curves showing the characteristics secured

with representative values of the network elements has therefore been pre-

pared and is given in the charts at the end of the chapter. The charts also

cover the two degenerate cases, in which the interstage exclusive of the

parasitic capacity consists of a resistance alone or a resistance and induct-

ance in series, obtainable by assigning extreme values to the elements in

any of the configurations.

17.8. Four-Terminal Interstage Networks— General Discussion

In ordinary amplifier design the interstage networks are frequently four-

terminal structures, such as tuned transformers and the like, rather than

the simple shunt impedances which we have thus far considered. Four-

terminal interstages are often convenient physically. For example, a trans-

former coupled amplifier, aside from being relatively simple of itself,

* That is, structures giving an infinite loss or gain at finite frequencies are omitted.

For example, shunt inductance paths to ground are excluded on the assumption that

in a design on the low-pass basis any such path, if present, will produce only a modifi-

cation of the sort illustrated by the broken line in Fig. 10.14 of Chapter X and can be

ignored in the high-frequency design.
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affords a convenient method of introducing plate and grid voltages into the

circuit. Four-terminal structures are also capable of giving more gain than
can be obtained from two-terminal interstages. They have been ignored

thus far principally because they usually exhibit excessively high phase
shifts, which make them unsuitable in a feedback device. They will be
considered here briefly, however, as a matter of general interest.

The reason why a four-terminal interstage can be expected to give more

^--^ ^^ gain than a two-terminal struc-
~~
Qjj) | , j— o-—I Qfij ture can be seen most easily by

I ±c" J-<l^ i\ 4-r It means of the circuit* shown by
Fig. 17.23. The network is a

full-shunt terminated low-pass

Fig. 17.23 filter of the type described orig-

inally in connection with two-

terminal maximum gain interstages. Instead of lumping plate and grid

capacities together, however, they appear separately as the two capacities

labelled C/2 in the drawing. The gain and phase characteristics are given

by

a + # = log -^ - 3 log [Jl - ^ + i -1 • (17-19)

At high frequencies the gain of the circuit is much less than that of a two-

terminal interstage and its phase shift is much greater, as we might expect

from the fact that a filter section has been interpolated between grid.and

plate. Within the band, on the other hand, the filter is transparent and

since it is of recurrent structure the absolute value of grid and plate voltages

must be the same. At the plate terminals, however, the impedance is that

of a full-shunt terminated constant k filter, and the flow of plate current

therefore produces a voltage of constant absolute value throughout the

useful band, just as it did in the case of the two-terminal interstage. The
only difference lies in the absolute level of gain, which is 6 db higher in

(17-19) than it is in the corresponding expression (17-13), in agreement

with the fact that the final shunt branch of the filter can be identified with

C/2 rather than with C. The separation of grid and plate capacities which

makes this possible is evidently the general physical advantage of a four-

terminal over a two-terminal interstage.

In preparing Fig. 17.23 it has, of course, been assumed that grid and plate

capacities are equal. This is more or less approximately true with ordinary

tubes. If the two capacities differ substantially the situation can be

treated, for analytical purposes, by supposing that the network includes an

* Wheeler and Percival, loc . clt.
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ideal transformer or the equivalent, as illustrated by Fig. 17.24. The volt-

age gain of such a circuit in comparison with a similar structure terminated

in the capacities (Ci + C2)/2 at each end is %(Vd/C2 + Vc2/Ci)-

This is always greater than unity but the advantage amounts to only a few

Fig. 17.24 Fig. 17.25

tenths of a db for ordinary ratios between d and C2 so that we need merely
take the average of the grid and plate capacities in estimating performance.

It may be noticed that except as a means of matching capacities there

appears to be no general theoretical reason, on the basis of the analysis

given in this section, for including a transformer in the network.*

12
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1 0-i 0.4 0.6 o-e 1

Fig. 17.26

For practical purposes the ideal filter structure of Fig. 17.23 can be
approximated by a finite network in which the mid-shunt image impedance
from grid to cathode is matched to the terminating resistance by a mid-
series derived half section with m = 0.6 as shown on Fig. 17.25-f Fig-

* It must be remembered that this discussion is concerned only with the effect of
capacity limitation on interstage design. In narrow band amplifiers the capacity
limitation may permit higher impedance levels than can reasonably be constructed or

than can be used with the tubes, especially in the plate circuit, and a transformer may
be necessary on this account. Amplifiers with substantial grid or plate dissipation or

with critical limits on tube loads must also be excluded.

t As in Fig. 17.7 the numbers refer to a filter with unit cut-off and unit impedance
level, and the factors <aa, for the unit of frequency, and 4/w C, for the unit of imped-
ance, must be introduced to give actual element values, in ohms, henries, and farads.

The same conventions apply to Fig. 17.28.
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ures 17.26 and 17.27 show the gain and phase characteristics; the dotted

lines are the theoretical characteristics.

deq. ts

zoo
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.1 0.2 6-4 6.6 0-8 1:0

Fig. 17.27

1.067

Figure 17.28 illustrates a slightly different form of the structure* in which

a mid-shunt derived half section is used to match the terminating resistance.

This configuration is useful in permitting slightly unequal grid and plate

capacities to be taken into account ana-

lytically, without the necessity of employ-

ing an ideal transformer as was assumed in

Fig. 17.24. In terms of the parameter m
of the final half section, the grid and

plate capacities are [2/(3 + m)]C and

[(1 + i»)/(3 + m)]C, rather than C/2.

In Fig. 17.28 it is assumed that m — 0.6

which corresponds to a capacity ratio of 5 : 4. With extreme capacity ratios

the m becomes too small to provide an effective match to the terminating

±=2.0

Fig. 17.28
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Fig. 17.29

resistance and it is simplest in practice to produce approximate equality

between the two ends of the circuit by the addition of a certain amount

* This modification is due to the author's colleague, Mr. W. H. Boghosian.
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of padding capacity. The particular choice illustrated by Fig. 17.28 leads

to the approximations to the theoretical characteristics shown by the

solid lines in Figs. 17.29 and 17.30.

17.9. Equivalent Representation of a Four-Terminal Interstage

The four-terminal interstage networks described in the preceding section

are not necessarily those giving the maximum possible gain with prescribed

capacities. A general theoretical examination of the problem, however, is

unfortunately much more difficult for four-terminal interstages than it was
for two-terminal structures. The chief reason for the added difficulty of
the problem appears to be the fact that the absolute level of gain of a four-

terminal interstage is not uniquely fixed by its parasitic capacities and the

way in which its gain and phase characteristics vary with frequency. This
is in contrast to the situation in the two-terminal case, where it was possible

to set up a definite relation such as (17-6) among these quantities. Differ-

ent physical four-terminal structures, on the other hand, may have identical

parasitic elements, and gain and phase characteristics which vary in an
identical manner as functions of frequency, and still exhibit different levels

of absolute gain. Before the maximum gain can be calculated, therefore,

it is necessary to find out why these differences in level can exist, and what
further assumptions must be made concerning the network in order to

secure the most favorable possible case. The discussion presented here
gives only a general account of the problem and is not intended as either a

rigorous or an exhaustive analysis.

The problem of establishing theoretical limits on the gain obtainable

from a four-terminal interstage will be attacked by representing the inter-

stage as a combination of a number of positive and negative impedances.
Each impedance includes a parallel capacity, so that it is subject to the re-

sistance integral condition (13-7). The gain limitations are established

from a study of these conditions. It is convenient for purposes of analysis
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to suppose that the interstage is represented by its equivalent ir of branches

Zu Z2 , and Z3 , as shown by Fig. 17.31. Since Zx is not necessarily equal to

Z3 the interstage itself need not be symmetrical. The terminating capaci-

ties C/2 are, however, assumed to be the same at grid and plate terminals.

Fig. 17.31

It will be supposed that departures from this condition are treated by the

methods described in connection with Fig. 17.24. Since the unsymmetrical

7T may include an ideal transformer of any ratio there is no loss of generality

in making this assumption.

The gain can conveniently be expressed in terms of the transfer imped-

ance, ZT = RT + iXT , representing the voltage at the grid terminals per

unit current in the plate circuit. We readily find

Zt —
Z]ZZ

Z\ + z2 + z3

(17-20)

where Z[ and Z'3 are written for brevity to represent the parallel combina-

tion of Zi and Z3 , respectively, with the terminating capacities C/2.

Equation (17-20) can be rewritten as

Zt
~2LZ{

(Z2 + zj) ,
zUz[ + Z2 ) _ Z2 (Z[ + z'3 )

-

+ z2 + z3

+
z[ + z2 + z'z z[ + z2 + z3 _,

\ZA + ZB - Zc],
(17-21)

where ZA , ZB , and Zc represent the corresponding terms in the first expres-

sion. We observe that these three quantities are all physical impedances

which can be determined by external measurements on the network. For

example, ZA is the impedance which would be measured between termi-

nals Pi and P2 , and Zc that which would be measured between Pi and P3

in Fig. 17.31. The transfer impedance can consequently be represented

physically in the form shown by Fig. 17.32 where the successive impedances

correspond to the successive terms in (17-21). It is to be noticed that each

constituent impedance includes a parallel capacity and is therefore subject
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to the resistance integral limitation on its real component. In order to

utilize these conditions, attention will be directed primarily at the real

components so that (17-21) can be reduced to the simpler form

Rt = HRa+Rb - Re). (17-22)

-HEZhrjIZDj
-(. ~£.

Fig. 17.32

17.10. Four-Terminal Interstages with Restricted Phase Characteristics

It is convenient to begin the analysis by showing that the gain advantage

of the four-terminal over the two-terminal interstage can be realized only

if the phase shift of the four-terminal structure is permitted to be more
than 90°, or, in other words, more than the maximum obtainable from a

two-terminal structure, over at least a portion of the frequency spectrum.

Let it be supposed, on the contrary, that the maximum phase shift of the

four-terminal network is limited to 90°. If we begin with any relative

gain and phase curves for the interstage, subject to this restriction, we can

immediately construct from them a curve of the corresponding RT . With
the given phase limitation the curve will, of course, always be positive while

the scale upon which it is drawn will depend upon the assumed absolute

level of gain. But if the phase shift is to be only 90° at high frequencies the

gain must decrease at a rate of 6 db per octave or Zt, in other words, must
vary as \/'ikw. The relation between the constant k and the area under the

Rt characteristic in this situation is evidently exactly the same as the rela-

tion between the limiting capacity and the resistance integral in an actual

two-terminal impedance. If we can find the minimum possible value for k,

therefore, the area relation will show the scale upon which the Rr character-

istic should be drawn, and from this the maximum permissible absolute

level of gain can be deduced. Clearly, the absolute level of gain for the

four-terminal structure will be greater than that of a two-terminal inter-

stage having the same relative gain and phase characteristics only if we
can assign k a value smaller than C.

If Za, Zb, and Zc in (17-21) include only the capacity paths shown
explicitly in Fig. 17.32 the positive and negative resistance areas will cancel.

In order to secure a net positive area under the Rt characteristic, therefore,

it is necessary to assume that the interstage circuit proper will include

capacity paths to supplement the paths furnished by the external parasitic

capacities. This situation can be examined by supposing that the inter-

Stage proper can be represented at infinite frequency by an equivalent it of
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capacities Ci, C2 , and C3 as shown by Fig. 17.33.* The corresponding

expression for Z? is

L - z = 1 !£,

„ = »
r

iu C2 + 2(d + 2C2 + C3)C + 4(C1Ca + CXC3 + C2C3 )

(17-23)

The fact that the actual interstage must be physically realizable does not

necessarily mean that C\ t C2 , and C3 in the equivalent w must all be positive.

It is obvious, however, that the C's must
be so related that a positive capacity will

result from any external measurement on

the circuit. Thus C\ + C2 , Cx + C3 , and
C2 + C3 must all be positive since each is

the capacity appearing between two of the

external terminals when the odd terminal

is short-circuited to one of these two. If, in addition, we make use

of the fact that the measured capacity must also be positive when
no connection is made to the odd terminal, it is a simple matter to show
that the C's must satisfy the requirement

dC2 + CXCZ + C2C3 > 0. (17-24)

It is easily demonstrated from these conditions that Z? in (17-23) is not

greater than 1/icoC and reaches this limit only when C2 = °° and

Ci = Ca = 0. We therefore have immediately the

Theorem: The absolute level of gain, over any given band, of a four-

terminal interstage terminated in prescribed equal capaci-

ties at each end cannot be greater than that of a correspond-

ing two-terminal interstage unless the phase shift of the

four-terminal structure is greater than 90° over at least a

part of the frequency spectrum.

* It is not inevitably true that the branches of the ir must reduce to capacities at

infinite frequency if a finite resistance area is to be secured, especially when account is

taken of the possibilities afforded by interstages including ideal transformers. In

general, we must assume that the branches may behave at infinite frequency as

Aiw", A&)n, and Azun
, where, since the individual branches of the w need not them-

selves be physical impedances, n may be zero, one, or any negative integer. If the

interstage as a whole is to be physically realizable, however, the branches of the

equivalent structure must be so related that a physical impedance is obtained by any

external measurement. This means that A\, Ai, and A3 must satisfy a relation of the

form (17-24), where only the equality sign is permitted unless n = or ±1. With
the help of these conditions it can be shown that the result established in the text for a

capacity x holds also in the general case. The details of the analysis, however, are

omitted for the sake of brevity.
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The conditions C2 = °° and C\ = C3 = which give the maximum gain in

the four-terminal case are evidently those which apply when the structure

degenerates physically into a two-terminal network.

The restriction that the phase shift should not exceed 90° can be looked

upon in either of two ways. At high frequencies it implies that the gain

decreases at 6, rather than perhaps 12 or 18, db per octave. In a feedback

amplifier, interstage phase shifts greater than 90° at high frequencies are

usually fatal if any very large amount of feedback is to be obtained. A
phase shift greater than 90° over a limited low-frequency region, on the

other hand, may not be serious. It should be noticed, however, that if a

two-terminal and a four-terminal interstage have the same gain and phase

characteristics at high frequencies they must have the same total gain area

at lower frequencies. Thus the absence of a low-frequency phase restric-

tion on the four-terminal structure merely means that its gain can change

more sharply, and therefore the given total gain area can be distributed

more flexibly, than is possible with a two-terminal network. In a multi-

stage amplifier, however, this additional flexibility should be important

only in exceptional circumstances.

17.11. General Limitations on the Gain of a Four-Terminal Interstage

In view of these results it will be assumed hereafter that the four-

terminal structure is to be designed to give the maximum possible gain,

without regard to any limitation on its phase

characteristic. This implies, of course, that

the real component of Zt will be positive in

some frequency ranges and negative in others,

as indicated by Fig. 17.34. Since the situa-

tion is now symmetrical, as between positive

and negative resistances, we may expect that

the optimum solution will be obtained if posi- ,,r
,

i j Fl°- 17.34
tive and negative areas are equal and are

as large as possible. In other words, there will be no occasion, as there

was in the previous discussion, to supplement the capacity paths shown

explicitly in Fig. 17.32 by others in the interstage proper.

Let it be assumed, as was done previously, that the shape of Rt in

Fig. 17.34 has been determined from the relative gain and phase characteris-

tics desired but that the scale of the characteristic remains to be fixed by the

absolute level of gain. We cannot limit the absolute gain from a considera-

tion of the resistance integral for Rt as a whole, since it follows from the

statements made in the preceding paragraph that the net area under the

characteristic can be expected to be zero in the optimum case. A limit

can, however, be established from the resistance integral conditions apply-
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ing separately to the positive and negative components %{Ra + Rb) and
— 2^c of Rt in (17-22). For example, it is obviously not permissible to

choose an absolute level of gain so high that the area under the positive

parts of Rt exceeds the area under the curve for f {RA + Rb) alone.

In a network design chosen at random, it is to be expected that both
2(Ra + Rb) and %RC will be appreciable at most frequencies. Thus the

two components will tend to cancel to some extent and the net area under
the positive portions of the Rt characteristic alone, or under the negative

portions, will be less than the integrals of \ (RA + Rs ) or %RC individ-

ually. This means, of course, that the absolute level of gain must be
correspondingly reduced. For example, the broken line curves in Fig. 17.35

1.0

1.0

— -*• -s

0.2 ~ — xft^ \0.6 0.8 1#
-* \ /

\ I

\ /

\ /

2.0
2 RC\ _/

Fig. 17.35

show the several positive and negative resistance components for the

particular network of Fig. 17.23 and the solid curve the net Rt which
results.* This network meets the condition that it contains no high fre-

quency paths to supplement those offered by the parasitic capacities, so

that the area under the positive lobe of RT , extending from o> = to

co = 0.5o> , is equal to the area under the negative lobe, extending from
ai = 0.5o to co = co . We observe, however, that the component charac-

teristics cancel out to such an extent that either area is only about 40 per

cent of the areas associated with the characteristics for ^(Ra + Rb) and
2-Kc individually. The fact that such cancellations may occur, and to a

varying extent in different designs, explains why it is possible to have four-

terminal interstages including the same parasitic capacities and with the

same relative gain and phase characteristics but with different absolute

levels of gain.

*The unit of impedance in Fig. 17.35, and in the corresponding Figs. 17.36, 17.38

and 17.39 given subsequently, is taken as 4/coqC ohms.



INTERSTAGE NETWORK DESIGN 437

It is obvious that the maximum possible gain level would be obtained

ideally if Re were zero in frequency ranges for which RT is positive and

RA + RB were zero when Rt is negative, so that no cancellations could

occur. This relation, unfortunately, cannot be achieved if the interstage

network is to be physically realizable. We can, however, determine what

the minimum amount of cancellation must be. The condition that the

interstage be physically realizable is*

RaRb - Rt > (17-25)

or

VraRb =\Rt \+8i, (17-26)

where Si is positive or zero. This condition can be combined with (17-22),

which is conveniently rewritten as

RT = VraRb - \RC + « 2 , (17-27)

where 82 = \\vRa — viilj) 2 and is also either positive or zero. If RT
is negative the two equations give

2RT = -hRc + h + h, (17-28)

while if Rt is positive we have

%Rc = «i + S2 . (17-29)

The optimum condition is readily determined from these expressions. It

occurs when 5i = 52 = 0, which means that the network is symmetrical

and just meets the requirement of physical realizability given by (17-26).

With these 5's we have Re = when Rt is positive so that the complete

integral for §/?<? is concentrated into frequency ranges in which Rt is

negative. But Rt in these ranges is only half as great as \Rc, so that half

of the integral for ^(Ra + Rb) must also be found here in order to supply

the proper cancellation. The remaining half of the integral for

h(RA + Rb), of course, supplies the Rt characteristic in the frequency

ranges for which it is positive. These relations are illustrated by Fig. 17.36,

which shows the positive and negative components which would correspond

to the Rt characteristic of Fig. 17.35 in the ideal case. Only the total

positive component, J(^a + Rb), is drawn, since if the network is to be

symmetrical we must, of course, have Ra = Rb-

* Adapted from the conditions given by Gewertz, "Network Synthesis," Part III.

The requirement is fundamentally similar to that established for a capacity network

in (17-24). It can be deduced by studying under what conditions the input resistance

of the network will remain positive when a pure reactance of arbitrary magnitude and

sign is connected to the output terminals.
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Since the capacities which limit Za, Zb , and Zc are known, these con-

clusions can be translated into quantitative terms. The general result

appears as the

Theorem: The areas under either the positive or the negative portions

of the real component of the transfer impedance of a four-

terminal interstage network terminated in equal capacities

at both ends cannot exceed the resistance integral associated

with the sum of the terminating capacities. The limit is

attained if and only if the network is externally symmetri-
cal and its self and transfer resistances are in the limiting

relation for physical realizability.

The fact that the optimum network must be symmetrical makes it

possible to replace our preceding equation (17-21) for ZT by a somewhat

Fig. 17.36

simpler expression in which the necessary minimum of cancellation between

positive and negative resistance areas is taken into account automatically.

If we set Zx
= Z3 in (17-20) we readily find that the equation can be

rewritten as

Zf = Z[ 2

2Z[ + Z2

— 2A 1

ZiZ2

2 2Z[ + Z2

— 2^1 — ±ZC , (17-30)

where the symbols have their previous significance. The expression repre-

sents the combination of positive and negative impedances shown by
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Fig. 17.37. In comparison with the corresponding combination for the

general case, shown earlier by Fig. 17.32, we notice that the limiting capaci-

ties for the positive and negative component impedances are just twice

what they were before.

On the other hand, the positive and negative components can now be

regarded as entirely independent i npedances. It will be recalled that the

positive and negative components in Fig. 17.32 could be determined by

various external measurements on the network. In particular the nega-

tive component was a multiple of the impedance appearing between termi-

nals Pi and P3 in the general circuit of Fig. 17.31. This measurement still

applies in Fig. 17.37, since the negative component appearing there differs

from the earlier one only by a constant factor. The two positive com-

ponents \ZA and \ZB in Fig. 17.32 have, however, been replaced by the

single impedance \Z'X . To determine the new positive component we must

\ z\

kz z

\z,

Fig. 17.37

substitute for the measurements used earlier a measurement between termi-

nal P2 in Fig. 17.31 and terminals Pi and P3 strapped together.

With this change the measurements which determine the positive and

negative components become exactly the same as those used to find the

branches of the equivalent lattice of a general unbalanced symmetrical

structure in Fig. 12.18 of Chapter XII. The components are thus merely

multiples of the branches of the equivalent lattice. We can suppose that

they are chosen quite independently and that the various network relations

described in Chapter XII will be used to go from them to a suitable physical

configuration for the final interstage. This makes it unnecessary to

suppose that there is any overlapping or cancellation of the positive and

negative resistance characteristics. The optimum result is attained if we

postulate that the positive parts of the Rt characteristic are due entirely to

the positive component impedance and vice versa. The fact that a cancel-

lation of at least 50 per cent was found to be necessary in the analysis of the

general case is accounted for by the fact that the capacities limiting the

component impedances are twice as large as they were previously, so that

the resistance integrals are correspondingly reduced.

Since the absolute level of gain is finally limited by the positive and nega-

tive resistance integral conditions it is natural to suppose that maximum
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gain in any given region will be obtained if Rt = outside that range so

that, as in the two-terminal case, the resistance areas are concentrated

entirely in the useful band. If we make this assumption the design pro-

cedure for a four-terminal interstage having any given relative gain charac-

teristic in the useful range can be reduced to definite form. We begin by
writing specific formulae for the gain and phase characteristics of the inter-

stage. Such formulae can be constructed by multiplying the gain and

phase characteristics of an appropriately chosen two-terminal interstage of

maximum gain type by n, where n is any odd integer greater than one.*

The Rt characteristic is next obtained and the scale of the drawing, which

determines the absolute level of gain, is adjusted until the positive and

negative parts of the characteristic by themselves satisfy the required inte-

gral conditions. The reactances which correspond to the positive and

negative component resistances, taken separately, may then be determined.

This fixes the branch impedances of the equivalent lattice of the final struc-

ture and a suitable actual configuration may be found by using the various

equivalence relations described in Chapter XII. An example is given in

the next section.

17.12. Illustrative Design of a Four-Terminal Interstage

The analysis just concluded will be illustrated by a discussion of the

problem of designing a four-terminal interstage having the maximum
possible constant gain over a prescribed band. We begin by constructing a

formula for the gain and phase characteristics by multiplying the gain and

phase of a constant gain two-terminal interstage by the odd integer n.

This leads to

a + ip = log ZT = log K - n log L /l - -
2 + i —1 • (17-31)

When n = 3 this is evidently the same, except perhaps for the absolute

level of gain, as the expression given in (17-19).

The Rt characteristic defined by (17-31) follows a curve of the form

shown by Fig. 17.38. The number of loops depends, of course, upon n

but it is readily shown that the areas in the positive and negative loops will

be equal for any permissible n. The problem to be solved is that of adjust-

ing the factor K so that either the positive or negative areas will satisfy the

resistance integral condition. If we substitute <f>
= sin

-1
«/« the curve

in Fig. 17.38 becomes Rt = K cos n<t> and the equation for the integral of

* This choice of n is made because it leads to an Rt characteristic which has equal

positive and negative areas and is zero outside the band.
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the positive component, say, is

(+R) cos <t>
d<j> = K\ I cos w0 cos <j> d<$> + / cos «<£ cos <j> d<t>

+ ••• +
W2

JCOSBijlCOSf dty

(n-2)ir/2n J

2coqC
(17-32)

The o) in the right-hand side and the factor cos <t> in each integrand are

introduced to take account of the fact that the resistance integral condition

applies to an integration in terms of o> rather than <f>.

Fig. 17.38

Equation (17-32) can be integrated directly to give

nK f 7T 3ir Sir
cos -

—

\- cos -—h cos -—

h

2« In In
+ cos

(» - 2)r

2«
1--
J 2a> <C

(17-33)

But the trigonometric series is known* to be equal to \ cot (a-/2»). The

formula for K consequently becomes

K =r2^
|_ n

tan
7T ~| 7T

2wJ 2o) C

'

(17-34)

The quantity in the brackets reaches its maximum value w when n = «s

.

The limit on the maximum constant gain obtainable from the structure is

* Knopp, " Theorie und Anwendung der Unendlichen Reihen," p. 345.
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therefore given by the

Theorem: The maximum transfer impedance which can be realized

over a given band by a symmetrical four-terminal interstage

network terminated at each end in the capacity C/2 is not
greater than t2

/2 times the impedance of C for the given
•band.

This limit is about 8 db higher than the maximum gain obtainable from a

two-terminal interstage, or about 2 db higher than the gain realized from

the structure of Fig. 17.23.

A

-
D

l -
*2 0W

J
*'l*3% T-0.43C

> 4.84

Fig. 17.40

If we approach the theoretical limit extremely closely, by making n very

large, the positive and negative parts of the Rt characteristic will consist

of a large number of disconnected segments and the corresponding networks

must evidently be extraordinarily complicated. There is almost no

penalty, however, in choosing n = 3, the smallest permissible value, since

even with this n the bracketed quantity in (17-34) is 3.08, or only 0.2 db
below the maximum. With this choice, the Rt characteristic takes the

same form as that shown previously in Figs. 17.35 and 17.36. It is repro-

duced here to the proper scale in Fig. 17.39.
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The positive resistance component is defined as the Rt characteristic

from the origin to its intersection with the zero axis and as the zero axis

thereafter. The curve is roughly filter-like in its characteristics and as an

initial step in simulating it we may therefore construct the mid-shunt termi-

nated low-pass filter, with cut-off near the point u> = 0.5o> at which the

positive characteristic reaches zero, shown by the box in Fig. 17.40. This

Fig. 17.41

structure includes the capacity 0.43C as its final shunt branch. Since the

total parallel capacity for each component impedance in Fig. 17.37 is C, it is

necessary to add an additional capacity 0.57C to the network. Without

further modification this leads to the match to the positive resistance

characteristic indicated by the crosses in Fig. 17.39.

The negative resistance component is equal to zero from the origin to

w = O.Swo and follows the Rt characteristic thereafter. It can be treated

in much the same way. As the fundamental unit we take a mid-shunt

terminated band-pass structure transmitting the band extending from

roughly to = 0.5w to « = «o- This is shown by the box in Fig. 17.41.

Fig. 17.42

The nominal image impedance is displaced slightly from the theoretical

value, 4.84/o) C, to make the actual image impedance correct at the peak

of the negative resistance characteristic. The filter includes the capacity

0.49C To complete the network the required additional capacity, 0.51 C,
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is introduced and a tuning coil is added to place the resistance peak at the

correct frequency. The match to the theoretical characteristic is indicated

by the circles in Fig. 17.39.

In accordance with the discussion given in connection with equa-
tion (17-30), the networks of Figs. 17.40 and 17.41 have impedances which
are half as great as those of the branches of the equivalent lattice of the

complete circuit. To find the final structure we may begin by removing
the parallel capacities, using the equivalence shown by Fig. 12.22 of

Chapter XII. The remainder can be converted to a bridged-T by means
of the equivalence described in connection with Fig. 12.26 of the same
chapter. This leads to the circuit shown by Fig. 17.42. The network

iVi is equal to the structure of Fig. 17.40 after all the elements shown ex-

plicitly in Fig. 17.40 are removed and the network N2 is equal to the

structure of Fig. 17.41, but at a four times greater impedance level, under

the same conditions. The final gain and phase characteristics, with the

reference gain taken as log l/co C, are shown in Fig. 17.43. The ripple

in the center of the band is due to the fact that the filter circuits are too

selective to follow the characteristics of Fig. 17.39 in this region. It can

be reduced either by using simplified filters with imperfect selectivity or

by adding traces of dissipation to the structures. The broken lines in

Fig. 17.43 show the effect obtained if we suppose that the filters as they

stand have a Q of 100.
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CHAPTER XVIII

Design of Single Loop Absolutely Stable Amplifiers*

18.1. Introduction

In the preceding two chapters attention has been centered on the design

of particular parts of a feedback amplifier. From this point on, however,

we will be concerned primarily with the overall design of the complete

structure. Attention will be directed particularly to single loop, absolutely

stable amplifiers, which are those most commonly encountered in contem-

porary design practice. Design examples for the theory developed in this

chapter have been segregated and are presented in the chapter which

follows. The chapter includes references, however, to permit the reader

to turn to pertinent examples immediately if he so desires.

The restriction to single loop amplifiers means physically that the tubes

are unilateral elements connected directly in tandem, as they are in the

usual n circuit. For the sake of later discussion, its precise meaning will be

understood to be that given by the

Definition: A single loop amplifier is one in which the return difference

of any tube is equal to unity if the gain of any other tube

in the circuit vanishes.

This is evidently equivalent to saying that the transconductances of the

various tubes can enter the circuit determinant only as the product

Gmfim^ • • • Gmn . It implies both that the tubes must be directly in

tandem, as stated, and that the return differences for all tubes under operat-

ing conditions are the same.

It should be noticed that the definition excludes amplifiers in which there

is local feedback on one or more of the tubes produced by an impedance in

the cathode circuit, parasitic grid-plate capacity, or some similar instru-

mentality. For engineering purposes this restriction is somewhat too rigor-

ous since many such circuits can be analyzed successfully as single loop

structures merely by taking account of the modifications in the forward

circuit gain which the local feedback produces. As a more comprehensive

analysis would show, however, the stability of such a circuit is sometimes

* See also the author's paper in the B. S. T. J. for July, 1940, or U. S. Pat. No.

2,123,178.
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much affected by the relative rates at which tube gains decay with age, or

the relative rates at which they increase as the tubes warm up when power

is first applied to the circuit, so that the assumption that the structure can

be analyzed as a single loop amplifier, without qualification, is treacherous.

On the other hand, the definition includes as single loop amplifiers struc-

tures having any number of distinct paths for the return of voltage from

the plate of the output tube to the grid of the input tube. An example is

furnished by one of the illustrative designs described in the next chapter.

The structure has one fi circuit and two

/3 circuits as shown by Fig. 18.1. The
distinction between the two /3 paths is of

engineering importance, since only one is

operative in the useful band and there-

fore has the external characteristics of

the amplifier under its control. The
other is added to improve the phase angle of the returned voltage at high

frequencies. For the purposes of the present discussion, which is con-

cerned primarily with the stability of the circuit, however, any number of

such alternative paths can be combined and regarded as a single four-

terminal network.

The requirement that the structure be absolutely stable refers to the

analysis developed in Chapter VIII. It will be recalled that the T plot of a

typical amplifier fell into one of the three categories illustrated by Fig. 18.2.

Fig. 18.1

T plane
f=00 f=0

i .'/
\m nl (i

~-*z$r

Fig. 18.2

If the path is like Curve II, which encircles the point —1, 0, the circuit is

unstable. A stable amplifier is obtained if the path resembles either

Curve I or Curve III, neither of which encircles —1, 0. The stability

represented by Curve III, however, is only conditional since the path will

enclose the critical point if it is merely reduced in scale. Thus the circuit
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may sing when the tubes begin to lose their gain because of age, and it may
also sing, instead of behaving as it should, when the n gain increases from

zero as power is first applied to the circuit. In this chapter it will conse-

quently be assumed that the amplifier is of the absolutely stable type repre-

sented by Curve I, and remains stable for any reduction in yt circuit gain.

The condition that the amplifier be absolutely stable is evidently that the

loop phase shift should not exceed 180° until the gain around the loop has

been reduced to zero or less. A theoretical characteristic which just met

this requirement, however, would be unsatisfactory, since it is inevitable

T plane / \

1 VyW RADIANS ^ \ 1

\ -**' J

^ /

Fig. 18.3

that the limiting phase would be exceeded in fact by minor deviations intro-

duced either in the detailed design of the amplifier or in its construction.

It will therefore be assumed that the limiting phase is taken as 180° less

some definite margin. This is illustrated by Fig. 18.3, the phase margin

being indicated as yir radians. At frequencies remote from the band it is

physically impossible, in most circuits, to restrict the phase within these

limits. As a supplement, therefore, it will be assumed that larger phase

shifts are permissible if the loop gain is x db below zero. This is illustrated

by the broken circular arc in Fig. 18.3. It is, of course, contemplated that

the gain and phase margins x and y will be chosen arbitrarily in advance.

If we choose large values we can permit correspondingly large tolerances in

the detailed design and construction of the apparatus without risk of insta-

bility. It turns out, however, that with a prescribed width of cut-off

interval the amount of feedback which can be realized in the useful range is

decreased as the assumed margins are increased, so that it is generally

desirable to choose as small margins as is safe.

It will be assumed throughout the chapter that the amplifier is of the low-
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pass type. The various transformations described in Chapter X, including

in particular the theorem on conservation of band width, may be used to fit

the results obtained to other situations. Examples requiring some of these

modifications are given in the next chapter.

18.2. Ideal Cut-off Characteristics

The essential feature in the situation just discussed is the requirement

that the gain around the feedback loop be reduced from the large value

which it has in the useful band to zero or less at some higher frequency

without producing an accompanying phase shift greater than some pre-

scribed amount. It is evident from the general relations described in

Chapter XIV that this requirement amounts basically to a condition upon

the rate at which the gain outside the useful band is reduced. If it were not

for the phase restriction it would be desirable on engineering grounds to

reduce the gain very rapidly. The more rapidly the feedback vanishes, for

example, the narrower we need make the region in which active design

attention is required to prevent singing. Moreover, it is evidently desirable

to secure a loop cut-off as soon as possible in order to avoid the difficulties

and uncertainties of design which parasitic elements in the circuit intro-

duce at high frequencies. But the analysis of Chapter XIV shows that the

phase shift is broadly proportional to the rate at which the gain changes.

If the phase shift is not to be greater than a prescribed amount, therefore,

the rate at which the amplifier cuts off, on the whole, must not exceed a

fairly well defined limit. For example, if we assume a phase margin of 30°

the allowable n& phase shift is 150°, which corresponds broadly to a gain

characteristic changing at the rate of 10 db per octave.

It is evidently desirable to have a phase characteristic which is as great

as possible, within the prescribed limit, in order to secure the most rapid

cut-off. The exact cut-off shape which best meets this condition can be

obtained if we return to the analysis which underlies equation (17-13), for

the maximum gain interstage, in the preceding chapter. It will be recalled

that this equation was derived from the general formula (14-33) of Chap-

ter XIV by specifying that the interstage gain should be constant in the

useful band and that its phase angle should be constant and equal to

— 7r/2 beyond it. An essentially similar analytic problem exists in the

present situation if we suppose that a constant feedback in the useful band

is desired. The requirement on the gain around the feedback loop merely

takes the place of the interstage gain requirement, while beyond the band
the requirement that the loop phase shift should not exceed a prescribed

amount takes the place of the requirement on the phase angle of the inter-

stage. The only noteworthy difference is the fact that the phase require-

ment has been changed from ir/2 radians to (1 — j)ir radians. This change
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multiplies the variable part of the final expression proportionately. We
can consequently rewrite the interstage gain and phase shift expression to

suit the feedback loop problem in the form

A + iB = A - 2(1 - y) logL/l - ~ + i—1, (18-1)

where A and B are respectively the real and imaginary components of

log T = log (— M/3) and Ao represents the gain around the loop in the useful

band. A plot of A and B for the choice y = -g-, corresponding to a 30°

phase margin, is shown by Fig. 18.4. The constant gain Ao is, of course,

still to be added.

g—
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Fig. 18.4

In view of the exact analogy between the interstage problem and the

feedback loop problem most of the detailed conclusions developed in the

preceding chapter can be applied directly to the present situation. The
results of principal interest are:

1. In the interstage analysis the plot of the gain characteristic against

log to reduced, at high frequencies, to a straight line with a slope of 6 db
per octave, representing the characteristic of the parasitic capacity

alone. Here, similarly, equation (18-1) reduces at high frequencies

to a straight line with a slope of 12(1 — y) db per octave. This is

indicated by the broken line in Fig. 18.4. Near the edge of the band
the actual characteristic varies more rapidly than the straight line, to

take account of the fact that there is zero slope within the band, and at

the band edge it lies 12(1 — y) db above the straight line. This corre-

sponds to the 6 db advantage which a maximum flat gain interstage
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has over the capacity gain at the band edge and permits us to save one

octave of the cut-off interval which would be necessary if we relied

upon a straight line characteristic alone.

2. If the phase margin and the loop gain at high frequencies are to be kept

constant, but the loop gain in the useful band is to be variable with

frequency, the absolute level of loop gain must meet the condition

that the area under the gain characteristic when plotted against

4> = sin
-1

co/ooo must be kept constant.

3. If the loop gain at high frequencies and the shape of the gain charac-

teristic in the useful band are prescribed, but a variable rather than a

constant phase margin is desired over a portion of the cut-off range,

the absolute level of gain, in nepers, in the useful band should be

changed by an amount equal to the average height, in radians, of the

plot of (w/co )[5 — (1 — y)ir] against <j>' = sin oj /co, where B and

(1 — y)w represent respectively the variable and constant margin

phase characteristicf

.

In the interstage design the high frequency gain characteristic is used as a

reference because it corresponds to the parasitic capacity. The reason for

supposing that it is fixed in a feedback loop problem, as statements (2)

and (3) assume, will appear later. It

may also be noticed that although (2)"©
^

-©
cic

t

Fig. 18.5

and (3) are formulated for amplifiers in

which a variable feedback in the useful

band or a variable phase margin are

desired, they can also be used in cor-

recting a preliminary design in which

the feedback and phase margin are variable when they should be constant.

For example, if the preliminary design is satisfactory except that the

feedback in the useful band is too irregular, statement (2) shows how
much feedback we should attempt to get in adjusting the circuit to secure

a flatter characteristic.

The close analogy between the ideal cut-off defined by (1) and the

characteristic of a maximum gain interstage makes it possible to exemplify

(1) by an amplifier in which the transmission around the loop is determined

entirely by interstages. The structure is shown by Fig. 18.5. It can be

regarded as a degenerate shunt feedback amplifier in which the /? connec-

tion is reduced to a short circuit and in which the input and output circuits

are vestigial, and contribute only an infinitesimal admittance across the

feedback path. The transformer shown in the drawing is supposed to be an

ideal one, of unity ratio, and is introduced merely to secure the phase

reversal necessary to permit feedback in the proper sign with an even
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number of tubes. We might dispense with it by converting the circuit to a

push-pull structure with a pair of crossed terminals. The networks N in

Fig. 18.5 are both maximum gain interstages of the type shown by Fig. 17.6

of the preceding chapter. The gain around the loop is evidently the sum of

the gains of the two interstages and can be written as

A+iB = 2\og^-2 log L/l - 4 + * -1' (18-2)

where Gm is the transconductance and C the sum of the grid and plate

capacities for either tube. The expression has the form assumed by (18-1)

in the limiting case of zero phase margin.

Aside from serving as an example of (18-1) the structure of Fig. 18.5

is of considerable interest from another point of view. It represents the

theoretical limiting form to which an amplifier reduces when every other

design consideration is sacrificed to secure the maximum possible feedback.

As the structure stands the feedback obtainable over any given band is, of

course, given by the first term of (18-2) and depends only upon the ratio

Gm/C and the band width co . The ratio Gm/C is the so-called "figure of

merit " of the tubes. It is equal to the frequency, in radians per second, at

which the tubes working into their own parasitic capacities would have zero

gain. Zero feedback is obtained when &> is twice Gm/C, as we can see either

from (18-2) or directly from the fact that the gain of a maximum gain

interstage is 6 db greater than the capacity gain at the band edge. Since

in some present-day tubes the figure of merit may represent a frequency of

the order of 100 mc, this means that if a structure like Fig. 18.5 could be

built it should be possible to realize some feedback (i.e.,
|

/x/3| > 1 ) over bands

as broad as 200 mc* If we start with the 200 mc band as a basis, the

feedback which the structure should furnish over narrower bands varies

inversely as the square of the band width. Thus over a 10 mc band it is

about 50 db, over a 1 mc band about 90 db, and over a 10 kc band about

170 db.

These are evidently much larger values of feedback than those to which

we are accustomed in normal design practice. They are achieved, of

course, only because of the artificial simplicity of the circuit. In a practi-

cal design it would be necessary, at least, to provide input and output cir-

cuits capable of transmitting a finite amount of signal power between the

amplifier and the line and to include a § circuit having a finite loss, so that

the amplifier might have some gain. We might also wish to give con-

sideration to such factors as the transit angle of the tubes, the use of tubes

with poorer figures of merit but better characteristics in other respects, or

the provision of a definite phase margin to permit the circuit to be con-

* This ignores the tube transit time, discussed later in the chapter.
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structed with reasonable standards of precision. These considerations

inevitably reduce the amount of feedback which can be obtained in a

practical design very substantially. In a broad sense, however, one of the

most important problems in feedback amplifier design is that of planning

the circuit in broad outline to prevent the sacrifice in feedback from becom-

ing intolerably great. The structure of Fig. 18.5 is useful here, in spite of

its artificiality, as a standard of comparison.

18.3. Asymptotic Characteristic of the Feedback Loop

The direct analogy between the interstage gain characteristic and equa-

tion (18-1) for the transmission around the feedback loop breaks down at

only one important point. In dealing with the interstage the limit on the

absolute level of gain is obviously set by the fact that the characteristic

must reduce to that of the interstage capacity alone at sufficiently high

frequencies. If we begin with too high a gain in the useful band it is

impossible to reduce the gain fast enough beyond the band to reach the

capacity characteristic without producing a phase shift which exceeds the

90° limit for a physical two-terminal structure.

In the loop transmission problem, the absolute level of loop gain which

can be assumed to exist in the useful band is limited by similar, but more

complicated, considerations. So far as a purely theoretical formula like

(18-1) is concerned, there is clearly no limit to the feedback which can be

postulated. As the constant A , representing the feedback in the useful

band, is increased, however, the interval in which there is appreciable trans-

mission around the loop extends to higher and higher frequencies. The
process reaches a physical limit, broadly speaking, when the frequency

becomes so high that parasitic effects are controlling and do not permit the

transmission characteristic prescribed by (18-1) to be simulated with

sufficient precision. For example, we are obviously in physical difficulties

if (18-1) requires a net gain around the loop at a frequency so high that the

tubes themselves working into their own parasitic capacities do not give a

gain. This is the limit which is effective in the special circuit of Fig. 18.5,

and is one of the reasons for regarding this structure as a reference in

feedback computations. In a practical amplifier, limitations on the loop

gain must be encountered more quickly because of the additional losses

contributed to the loop transmission by the input and output circuits and

the |3 circuit. In comparison with the interstage problem, the chief differ-

ence to be noticed is that the high-frequency transmission around the

loop is controlled by a complex of elements rather than by a single specific

parasitic capacity. The characteristic to which the loop transmission

tends at sufficiently high frequencies under the influence of all the significant

parasitic elements in the loop will be called the asymptote of the loop.
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The calculation of the loop asymptote is easily understood from the

illustrative circuit shown by Fig. 18.6. The structure is a shunt feedback

amplifier. The /3 circuit is represented by the T composed of networks

N&, N& and N?. The input and output circuits are represented by Ni
and Ni and the interstage impedances by 2V2 and iV3 . The C's are parasitic

capacities with the exception of C5 and C6 , which may be regarded as design

Fig. 18.6

elements added deliberately to N5 and 7V6 to obtain an efficient high-

frequency transmission path from output to input. At sufficiently high fre-

quencies the loop transmission will depend only upon these various capaci-

ties, without regard to the N's. Thus, if the transconductances of the

tubes are represented by Gmi , Gm2, and Gmz, the asymptotic gains of the

first two tubes are Gmi/o>C2 and Gm^/coC^. The rest of the loop includes

the third tube and the potentiometer formed by the capacities C\, C*, C5,

and Cq. Its asymptotic gain can be written as GmJo>C, where

Ci + C4 +^ (C5 + C6 ). (18-3)

The complete asymptote is the product of these terms or, in other words,

Gm,
1
G„hGmJo3

3
CC2Cs. It appears as a straight line with a slope of 18 db

per octave, or 60 db per decade, when plotted on logarithmic paper. The
fact that the asymptote can be expected to appear as a straight line on

logarithmic paper in the general case is easily seen if we write the transfer

impedance around the loop as

Zt = J + Jt(io>) + A2 (ico)
2 + h Ami {iu>)

n

Bq + B^iu) + 52 (to)
2 + • • • + Bm2

When to approaches infinity the expression reduces to

('«)"
(18-4)

Zf
B„

(*'«>)"
-(m2—mi) (18-5)

which represents a straight line with slope (m2 — mi) in units of 6 db per

octave. The quantity (m2 — m\) will be represented by n in future dis-

cussions. In Fig. 18.6, n = 3 and is the same as the number of tubes in the
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circuit. It is evidently not possible for n to be smaller than the number of

tubes, since each tube must at least work into its own parasitic capacity,

but it may be greater in some circuits. For example, if C5 or C& were

omitted in Fig. 18.6 and the associated network N5 or N& were regarded as

degenerating into a resistance, the asymptote would have a slope of 4

units and would lie below the present asymptote at any reasonably high

frequency.
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The effect of the asymptote on the overall feedback characteristics is

illustrated by Fig. 18.7. The curve ABEF is a reproduction of the ideal

cut-off characteristic originally given in Fig. 18.4.* It will be recalled

that the curve was drawn for the choicey = -g-, which corresponds to a phase

margin of 30° and an almost constant slope, for the portion DEF of the

characteristic, of about 10 db per octave. The straight line CEK repre-

sents an asymptote of the type just described, with a slope of 18 db per

octave, and with a zero gain intercept at co = 9u - Since the asymptote

may be assumed to represent the practical upper limit of gain in the high-

frequency region, the effect of the parasitic elements can be obtained by
replacing the theoretical cut-off by the broken line characteristic ABDEK.
In an actual circuit the corner at E would, of course, be rounded off, but

this is of negligible quantitative importance. Since EF and EK diverge by
8 db per octave the effect can be studied by adding a curve of the type shown
by Fig. 14.8 of Chapter XIV to the original cut-off characteristic.

The phase shift in the ideal case is shown by Curve I of Fig. 18.8. The
addition of the phase corresponding to the extra slope of 8 db per octave at

* Except, of course, for the constant^- In Fig. 18.7 and the succeeding Figs. 18.13,

18.15, and 18.18 the asymptote remains the same and A is chosen, in each case, to

suit the cut-off characteristic under investigation.
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high frequencies produces the total phase characteristic shown by Curve I'.

At the point B, where
|

(ij3
|

= 1, the additional phase shift amounts to 35°.

Since this is greater than the original phase margin of 30° the amplifier is

unstable when parasitic elements are considered. In the present instance

stability can be regained by decreasing y to ^-, which leads to the broken

line characteristic AGKH in Fig. 18.7. This reduces the nominal phase

margin to 15°, but the frequency interval between G and K is so much

/
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Fig. 18.8
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greater than that between B and E that the added phase is reduced still

more and is just less than 15° at the new crossover point G. This is illus-

trated by II and II' in Fig. 18.8. On the other hand, if the zero gain inter-

cept of the asymptote CEK had occurred at a slightly lower frequency,

no change in y alone would have been sufficient. It would have been

necessary to reduce the amount of feedback in the transmitted range in

order to secure stability.

18.4. Asymptotic Characteristics in Some Illustrative Circuits

In later sections the discussion of the effect of the asymptote in limiting

the amount of feedback available will be based upon a slightly more elabor-

ate relation between the asymptote and the ideal cut-off than that indicated

by Figs. 18.7 and 18.8. Even the simplified statement of the situation

given by these figures, however, is sufficient to show the essential role which

the asymptote plays in the design. It is evident that a large feedback

cannot be obtained if the asymptote crosses the zero gain axis too close to

the useful band or has too high a slope. Fortunately, the asymptotic

characteristic can be obtained relatively easily, since it depends only upon

the parasitic elements of the circuit and perhaps a few of the most signifi-

cant design elements. It can thus be computed from a skeletonized ver-
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sion of the final structure. If waste of time in attempts to obtain unrealiz-

able amounts of feedback is to be avoided such a computation should be

made as early as possible, and certainly in advance of any detailed design.

Broadly speaking, the asymptotic characteristic depends in part upon

the tubes and interstage capacities and in part upon the input and output

circuits and the /3 circuit proper. This is the division suggested by the dis-

cussion in connection with Fig. 18.5. The particular circuit given there

represents the extreme case in which the contributions of the input, output,

and /3 circuits to the asymptotic characteristics are reduced to zero by

reducing these structures themselves to vestigial appendages of the com-

plete amplifier. If we regard the forward circuit as given, the design prob-

lem confronting the engineer is broadly that of introducing functional

circuits in these positions without unduly degrading the asymptotic charac-

teristic. The solution which is achieved will depend in part upon the type

of feedback adopted and in part upon the balance which is struck between

the desirability of a large feedback and other indices of the overall amplifier

performance.

These considerations are most easily illustrated by reviewing briefly the

asymptotic characteristics which we may expect to secure for the elemen-

tary structures listed in Figs. 3.5 to 3.8 of Chapter III. If we begin with a

shunt feedback amplifier a typical circuit may be assumed to take the form

already shown by Fig. 18.6 of the

present chapter. The asymptotic

path from the output plate to the in-

put grid is shown by Fig. 18.9. The
inclusion of input and output trans-

„ ,„„ formers in the circuit can be repre-
Fig. 18.9 , . , . . ,

sented in the asymptotic path by

adding their high side capacities to the shunt capacities C\ and C4. For

maximum efficiency the added capacities should be small, but if we attempt

to make them too small, as by reducing the transformers to a few widely

spaced turns, for example, we may expect malfunctioning of the circuit

for some other reason.

The j3 circuit is represented in the asymptotic path by the series combi-

nation of Cs and Cq. For maximum feedback these capacities should be

very large. They can be made as large as we please, for any given circuit

loss, by scaling down the impedance levels of the series branches in the /3

circuit T of Fig. 18.6, provided the impedance of the shunt branch is also

decreased by the proper amount. But if the impedance level of the j3

circuit is made very low it becomes an appreciable shunt on the input and

output circuits within the useful band. This will degrade the volume per-

formance characteristics of these circuits, as defined in Chapter XVI.



SINGLE LOOP AMPLIFIERS 463

Thus the exact asymptote depends upon a compromise between volume

performance and feedback considerations.

A simple series feedback amplifier is shown by Fig. 18.10. The asymp-

totic path from output plate to input grid is shown by Fig. 18.11. The

central shunt capacity C7 may be identified with the distributed capacity

to ground of the 8 circuit and the input and output transformers. It

should, of course, be kept as small as possible. The two series capacities,

C\ and Cq, represent the capacities across the high windings of the trans-

Fig. 18.10

formers. The best asymptotic transmission will be obtained if they are

quite large. On the other hand, the relations of Chapter XVI show that

the highest le/els of volume performance and external gain can be obtained

if the two capacities are made as small as possible. Thus the exact asymp-

tote depends again upon a compromise between considerations of this sort

and considerations of feedback, although the particular relationships

involved are somewhat different from those appearing in the shunt type

circuit.

In constructing Fig. 18.10 the 8 circuit was represented as a simple shunt

impedance. As an alternative, we may suppose that the 8 circuit is con-

structed as a ir. This change may be made either to secure additional

(^TtrTrO Q
Tcs TC-, Tc

-II-

;K o
Fig. 18.11 Fig. 18.12

flexibility in design or to avoid the extremely low impedance levels which

are sometimes encountered with single branch structures. If we suppose

that the central branch of the w is paralleled by a capacity Cs and that the

capacity in shunt with the original 8 circuit is allocated equally to each end

of the new structure, the new asymptotic path takes the form shown by

Fig. 18.12. It is clear that the introduction of the capacity C$ necessarily

increases the asymptotic loss, so that the single branch 8 circuit represents

the optimum choice. If the impedance level of the x circuit is low enough,
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however, it may be possible to make Cg so large that the asymptotic penalty

is unimportant.

The considerations affecting the asymptotic paths in the other principal

types of feedback circuits are broadly similar. In the bridge type feedback

illustrated by Fig. 3.6 of Chapter III, for example, the asymptotic path is

roughly similar to that which might be found in a shunt or series type struc-

ture except that an additional loss due to the bridge is interpolated at each

end. The amount of the added loss depends upon the bridge ratio. It is

customary to use an unequal ratio structure to favor transmission between

amplifier and line, or, in other words, volume performance. If the ratio is

extreme, however, the loss introduced to transmission around the asymp-
totic loop becomes excessively great, so that here again it is necessary to

compromise between volume performance and feedback considerations.

It is also possible to control the asymptotic loss to some extent by intro-

ducing small series coils or shunt condensers into the various bridge arms

in order to remove them, as far as possible, at high frequencies.

In hybrid coil circuits the asymptotic characteristic depends largely upon
whether high side or low side feedback is used. If we use high side hybrid

coil feedback, for example, the asymptotic transmission may be regarded as

taking place through the capacities across the high side coil windings.

This is similar to the situation found in a series feedback circuit and leads

to the same general type of asymptote. In a low side feedback, on the

other hand, the asymptotic path goes directly through the hybrid coils, so

that their leakage inductances appear as series elements between the para-

sitic capacities furnished by the rest of the circuit. In many amplifiers

this may increase the asymptotic loss so greatly that the amount of feed-

back available is seriously reduced. As a compensation, the fact that the

feedback path passes through the hybrid coils in the low side case means

that the external characteristics of the amplifier are stabilized against coil

variations, which is not true in a high side circuit.

18.5. Maximum Obtainable Feedback*

The analysis given in connection with Fig. 18.7 shows why the asymptote

limits the amount of feedback which can be obtained, but it is not sufficient

to show exactly what the maximum feedback with any given asymptote

should be. As the situation was left, the final phase characteristic reaches

the limiting 180° only at the crossover point, and there is a phase margin,

of varying magnitude, at all lower frequencies. The relation between

* The formulae for maximum available feedback presented in this section are

based upon loop cut-off characteristics of a type appropriate for practice. By using

more elaborate characteristics, however, it is theoretically possible to obtain slightly

more feedback. This is discussed at a later point.
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phase margin and feedback given earlier in the chapter shows that a some-
what more efficient solution for the extreme case will be obtained if the
limiting 180° is approximated throughout the cut-off interval.

The desired phase characteristic is attained if the original ideal cut-off

is connected to the asymptote in a somewhat more complicated manner
than was used previously. The new overall cut-off characteristic is shown
by Fig. 18.13. It consists of the original theoretical characteristic, drawn
for y = 0, from the edge of the useful band to its intercept, /&, with the
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Fig. 18.13

zero gain axis, the zero gain axis from this frequency to the intercept, /„,
between the zero gain axis and the asymptote, and the asymptote there-
after. It can be regarded as a combination of the ideal cut-off characteris-
tic, prolonged to infinity, and two semi-infinite slope characteristics. One
of the added slopes starts at/6 and has a positive slope of 12 db per octave,
since the ideal cut-off was drawn for the limiting value of y. The other
starts at/tt and has a negative slope equal to that of the asymptote itself.

As equation (15-12) of ChapterXV shows, the phase characteristic corre-
sponding to a semi-infinite slope is proportional to frequency at low fre-

quencies. The phase shifts corresponding to the two additional slopes thus
vary in the same way with frequency and since they are of opposite sign
they can be made to cancel one another provided the constants determining
the scales on which they are drawn are suitably chosen. The proper rela-

tion is evidently obtained if the frequencies at which the slopes begin are
in the same ratio as the slopes themselves. If we represent the slope of the
asymptote, in units of 6 db per octave, by n, this fixesfb in terms of/ by
the equation

A = 'fa-
n

(18-6)
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In Fig. 18.13, for example, where the asymptotic slope is 18 db per octave

the frequency ratio is 18 : 12 or 3 : 2. At low frequencies, this leaves the

complete phase characteristic equal to that which would be obtained from

the unmodified ideal curve alone. At higher frequencies, where the linear

approximation to the phase characteristics of the semi-infinite slopes is not

quite accurate, some account of these constituents must, of course, also be

taken. As Fig. 18.14 shows, however, the exact curve dips slightly below

180° at the point at which the gain characteristic reaches the zero axis, so

that the circuit is in fact stable.
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Once/& has been determined the proportions of the drawing make it an

easy matter to determine how large a feedback can be obtained within the

useful band. It is merely necessary to allow 12 db for each octave between

the band edge and/&, together with an additional 12 db to take account of

the increased slope of the cut-off characteristic near the band edge. With

the help of (18—6) the result can be written as

Am = 40 log10 (18-7)

where/o represents the band edge and Am is the feedback in the useful band

in db.

If the feedback indicated by (18-7) is more than is required in the final

amplifier the surplus can be utilized to provide a cut-off" characteristic hav-

ing definite gain and phase margins against singing. This is illustrated by

the characteristics of Figs. 18.15 and 18.16. The curves are drawn for the

gain and phase margins x = 9 and y = -g-, in the notation of Fig. 18.3.

The phase margin y =
-J,

or 30°, is provided by drawing the ideal cut-off
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portion of the characteristic for a 10 db per octave, rather than a 12 db per

octave, slope. The gain margin is provided by drawing the flat part of the

characteristic, linking the ideal cut-off and the asymptote, a corresponding

distance below the zero gain axis. As in the preceding analysis, the ratio
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Fig. 18.15

of the frequencies terminating the flat portion is supposed to be the same

as that of the slopes to which it is connected, so that the net phase charac-

teristic in the cut-off range proper is substantially the same as that of the

ideal characteristic.
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The degradation in feedback in the useful band which must be accepted

to provide prescribed phase and gain margins in this manner can be deter-

mined by a relatively simple calculation. To begin with, the frequencyfc

in Fig. 18.15, at which the cut-off finally joins the asymptote, is fixed in

terms of fa by the asymptotic slope and the gain margin x. Since
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the asymptotic slope is 6« db per octave, or 20n db per decade, we evidently

have log10/c//a = #/2Q», or, in other words,/c = l(f
/20n
/a . But the ideal

cut-off slope is 12(1 — j>) db per octave, or 40(1 — y) db per decade. The
relation between the slopes and the frequencies bounding the flat portion of

the characteristic therefore givesfd — [2(1 — y)/n]/e . Finally, the known
proportions of the ideal cut-off show that the feedback at the band edge,/o,

must exceed that at/d by 40(1 — y) log10 2/d/f db. But this difference is

equal to A + x, where A is the feedback in the useful band. Upon collect-

ing results, therefore, we have

A = 40(1 - y) log10
\W—J±

10
x/20n^"| _ x

L » /oJ

= 40(1 - y) log10 ^f + 40(1 - y) log10 (1 - y) +
2(

* ~ y)
x - x.

nf n

(18-8)

Since y is small we may expand logio (1 — y) in a power series

and ignore powers of y higher than the first. This permits the term
40(1 - y) log10 (1 - y) in (18-8) to be replaced by -17.4^. If we also

replace 40 log10 4/a/w/ by Am , from (18-7), we secure the final expression

n — 2 2Am - A= (Am + 17A)y + x + -xy. (18-9)
n n

Since the xy term is usually small the total degradation in feedback appears
substantially as the sum of separate degradations due to the phase and gain

margins individually. An example of the relation is furnished by a com-
parison of Figs. 18.13 and 18.15. In both cases the asymptotic frequency/a

was chosen as 9/ . In accordance with (18-7) this permits a maximum
feedback, Am , of 43 db, which is the feedback realized in Fig. 18.13. The
realized feedback in Fig. 18.15, however, is only 29 db. Of the 14 db
difference, about 10 db is spent in the phase margin term of (18-9), about
3 db in the gain margin term, and about 1 db in the product term.

18.6. Relation between Corrected and Uncorrected Loop Characteristics in

Typical Cases

The precise methods by which such a cut-off characteristic as that shown
by Fig. 18.13 is to be achieved will naturally differ from amplifier to ampli-

fier. The various possibilities are discussed at some length later in the

chapter and will be suggested in greater detail by the illustrative designs in

the chapter which follows. It is possible, however, to make one general

physical observation which applies to the great majority of amplifier

designs. In an amplifier designed in the simplest way, without regard to
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the shaping of the cut-off characteristic, it is generally true that some, at

least, of the circuits which are responsible for a flat feedback characteristic

in the useful band will tend to maintain their uniform response also for

some distance beyond the useful band. At higher frequencies, however,

their response characteristics begin to fail because of the parasitic elements

which the circuits contain and as the frequency increases still further

parasitic effects become more and more important until finally the overall

-WVWWVY*-

Fig. 18.17

loop characteristic merges smoothly into the asymptotic condition, in

which the response of every circuit varies in a manner dictated essentially

by the parasitic elements alone. Thus the overall loop gain characteristic

tends to be concave downward at least at high frequencies, if not over the

complete cut-off interval. The cut-off characteristic shown by Fig. 18.13,

on the other hand, is concave upward. Thus the general design problem
in most amplifiers is that of introducing such losses in the loop that the

cut-off rate will be increased at frequencies moderately removed from the

useful band and decreased at more remote frequencies. This is equivalent

to discounting parasitic effects in advance, so that they do not control the

loop characteristic until the cut-off finally meets the asymptote and design

effort is abandoned.

As a somewhat extreme example of these relationships we may consider

the circuit shown in Fig. 18.17. The structure is supposed to represent a

simple band-pass amplifier in which the interstage and input and output

coupling networks are damped tuned circuits. All the circuits will be

supposed to have the same Q. In terms of the equivalent low-pass struc-

ture the loop characteristic may be written as 140/(1 + 0.287z'to)
4

. The
constants in the expression are chosen to permit easy comparison with

Fig. 18.13. They give the same low frequency gain and the same* asymp-
tote as were used in that figure. The loop gain characteristic of the struc-

* That is, the asymptotic slope n of Fig. 18.13 has been increased from 3 to 4 but

the zero gain intercept /a is changed in proportion to give the same effective con-

dition at lower frequencies, in accordance with (18-6).
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Fig 18.18

ture is shown by Curve I of Fig. 18.18, the theoretical cut-off of Fig. 18.13

being shown by Curve II. The difference indicated by the shaded area is

therefore the loss characteristic which should be introduced into the loop,

by an equalizer or some analogous means, in order to stabilize the circuit.

The effect of such a change may be studied by comparing the correspond-

ing phase characteristics shown by Curves I and II of Fig. 18.19. The
areas under the two curves are

the same, but the insertion of

the additional loss characteristic

redistributes the total area so

that the maximum phase shift

remains less than 180° over a

much broader interval. It will

be seen that the unmodified

phase characteristic crosses 180°

at / = 3.5 /o- If the circuit

were stabilized by a gain control

which reduced the loop gain to zero at this point the resulting feedback

in the useful band would be 12 db. This compares with the 43 db obtained

with the theoretical cut-off. About half the 30 odd db of additional feed-

back would be obtained if Curve I of Fig. 18.18 were replaced merely by

a straight line of appropriately chosen slope. The increased slope of the

actual theoretical characteristic just beyond the edge of the useful band is

responsible for an increment of about 12 db and the final flat portion just

before the junction with the

asymptote for an improvement

of about 5 or 6 db. The first

example of the next chapter

shows a design problem of this

sort in more detail.

The analysis just concluded

leads to one other conclusion of

considerable general importance.

This has to do with the effec-

tive band width, for design pur-

poses, of a feedback amplifier.

If we accept the proportions in Fig. 18.15 as typical for a practical design,

we notice that the interval, in octaves, between the edge of the useful band

and the frequency at which the cut-off characteristic intersects the zero

gain axis is one less than the feedback in the useful band, expressed as a

multiple of 10 db. Between the zero gain intercept and the junction of the

characteristic with the asymptote, where we can say that design control is
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finally relaxed, there is an additional interval of nearly two octaves. Thus
the total effective design range is roughly one octave for each 10 db of feed-

back in the useful band, plus one additional octave.

Changes in the phase and gain margin assumed for the amplifier, or in its

asymptotic slope, may affect this estimate somewhat, but not enough to

alter the order of magnitude of the result. If we take the estimate at face

value it indicates that an amplifier with a useful feedback of 30 db will have
an effective band which is 4 octaves, or 16 times, broader than the useful

band. If we raise the feedback to 60 db, the effective range must be more
than a hundred times the useful range. If the useful band is itself large

these factors may lead to enormous effective ranges. For example, in a

4 megacycle television amplifier they indicate an effective range of about

60 megacycles for 30 db feedback, or of more than 400 megacycles if the

feedback is 60 db.

The general engineering implications of this result are obvious. It evi-

dently makes even the paper design of a feedback amplifier a far more
formidable undertaking than one might anticipate from a consideration of

the useful band alone. The construction and testing of the apparatus to

follow a prescribed characteristic over such wide bands is perhaps a still

more difficult problem. Unfortunately, the situation, in unconditionally

stable amplifiers, at least, appears to be an inevitable one. It merely

reflects the fact that the cut-off rate is broadly proportional to the loop

phase shift and must be held within comparatively modest limits if the

phase shift is not to be excessive.

18.7. Alternative High-Frequency Cut-off Characteristics

It will be recalled that the determination of theoretical loop characteris-

tics for a feedback amplifier was first attacked by constructing an ideal

cut-off characteristic which extended from the edge of the useful band to

infinity and produced a prescribed constant phase characteristic through-

out this complete range. In order to fit the solution for practical applica-

tion, however, it was necessary to allow for the fact that the loop charac-

teristic of a physical amplifier at extremely high frequencies must follow

the asymptotic line determined by its parasitic elements rather than the line

representing the ideal characteristic. The adjustment was made in

Figs. 18.13 and 18.15 by connecting the ideal characteristic and the asymp-
tote by a horizontal straight line " step " of particular length.

This appears to be the simplest device. There are, however, other ways
in which the two characteristics may be connected and some of the alterna-

tives permit slightly more feedback than can be obtained with the simple

step connection. Thus the statement that Am in (18-7) is the maximum
available feedback cannot be taken rigorously. For practical purposes the
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alternative solutions need not be regarded seriously, since they lead to at

most only a few db more feedback in ordinary situations and they envisage

a degree of design control which is scarcely feasible in a frequency region

where, by definition, parasitic effects are substantially controlling. They
are, however, of theoretical interest and they are of some practical impor-

tance, indirectly, as measures of the accuracy with which the step charac-

teristic must be realized in order to secure a satisfactory result.

The reason why we may expect that the step type cut-off leaves some-
thing still to be gained can be understood from an inspection of the phase
characteristic to which it leads. It follows from the phase integral theorem*

that the difference between the loop gain at some extremely low frequency

in the useful band and the loop gain at some extremely high frequency,

where we can regard the asymptotic condition as thoroughly established,

Fig. 18.20

is measured by the area under the phase characteristic between these two
points. Thus a slight improvement on the step type cut-off should be

obtained if the phase characteristic of Fig. 18.14 were replaced by one
which followed the 180° line exactly below the loss crossover and rose more
rapidly to its ultimate value thereafter.

This problem can be attacked either theoretically or by cut-and-try

modifications of the step type characteristic. Examples of possible cut-

and-try modifications are shown by the gain curves of Fig. 18.20 and the

associated phase curves of Fig. 18.21. The figures cover only the region of

transition from the ideal cut-off to the asymptote. In each figure the

curves labeled I represent the original step type solution while the remain-

ing curves correspond to the various modified characteristics. In prepar-

* Equation (13-19) of Chapter XIII.
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Fig. 18.21

ing the curves, it has been assumed as a matter of simplicity that the low-

frequency feedback for all the modified characteristics is the same and is

2 db greater than the feedback obtained from the unmodified characteristic.

This is, in fact, approximately the maximum improvement which the modi-

fications permit for the case considered, in which the asymptote has a slope

of 3 units. A slightly greater

advantage can, however, be ob-

tained with larger values of n.

The simplest possible modi-

fication is represented by Curves

II. It consists in reducing

slightly the length of the hori-

zontal step in the original char-

acteristic. The effect this has

in improving the approximation

of the phase characteristic to

180° in the region near the loss

crossover can be understood

from a study of the phase curves

of Fig. 18.21. Strictly speak-

ing, this modification is inadmissible in an absolutely stable amplifier, since

it leads to a phase shift slightly greater than 180° at low frequencies. The

overswing is very small, however, and can be neglected if it is assumed that

the amplifier will actually be built with a definite phase margin, so that Am
is of interest only as one of the quantities entering equation (18-9).

The modification illustrated by Curves III consists in replacing the

original horizontal step by a line having a slight slope. Except for the

fact that the phase overswing at low frequencies is avoided, the results to

which it leads are similar to those produced by the first modification. In

view of the difficulty of controlling the loop characteristics in the asymp-

totic region with precision, however, these curves represent a more nearly

attainable result than do either Curves I or Curves II.

Curves IV have been introduced to illustrate the effect of prolonging the

flat step beyond its junction with the asymptote. We might imagine such

a characteristic to be produced by anti-resonating a parasitic capacity in

one of the low impedance portions of the loop in this general region. On
paper, this method permits a large increase in available feedback if the pro-

longation is carried sufficiently far, to a frequency perhaps ten or more

times the intersection between the asymptote and the zero gain axis. It is

obvious, however, tnat these proportions require an impossible increase in

loop gain at high frequencies. As a more direct limitation, we may notice

that as the flat portion of the characteristic is extended to higher and higher
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frequencies the contribution of the steeply sloping line which is necessary to

join it finally to the asymptote leads to a larger and larger maximum phase

shift. But if the loop is regarded as consisting essentially of n reactive

branches in series or shunt, corresponding to the n parasitic elements in

the circuit, the maximum phase shift which is physically possible is n (x/2)

radians. It will be seen that this limit is slightly exceeded even with the

proportions actually used in Figs. 18.20 and 18.21.
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A somewhat more systematic approach to the general problem is obtained

if we begin by specifying exactly the phase characteristic which is to be

secured at all points above the useful band. The final asymptotic behavior

of the loop is taken into account by specifying that the phase shift at very

high frequencies shall be equal to «(tt/2) radians. The corresponding gain

characteristic can then be determined either by inspection or by applica-

tion of the general formulae of Chapter XIV. One example of the results

to which this attack leads is furnished by the expression

A + iB =A - 2 log V i -S +,
i]- (

"- 2>,ogi
[
i+

>/
i -3'
(18-10)

where, as in (18-1), A and B represent the loop gain and phase and A is

the loop gain in the useful band. Sketches of the A and B characteristics

to which the expression leads are shown by Curves I, Figs. 18.22 and 18.23.

A second example is furnished by the expression

A + iB = A - 2 :iog [V^-s
2+
^]- (w - 2)ioW 1

(18-11)
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This corresponds to the A and B characteristics shown by Curves II in

Figs. 18.22 and 18.23. It will be seen that the two expressions give quali-

tatively similar characteristics, but the distinctive features of the charac-

teristics are greatly exaggerated in the second case.

The meaning of (18-10) and (18-11) can best be understood by compar-

ing them with (18-1). It is evident that the first portion of either expres-

sion represents an ideal cut-off solution taken for the limiting case of zero

phase margin. The final terms in the two expressions are transition factors

which convert the ideal cut-off solution at high frequencies into the asymp-

totic characteristic. Thus neither term makes any appreciable contribu-

tion to the loop gain in the useful band* and both leave the loop phase shift

unchanged below/r . This frequency corresponds to the corner in Curve I

of Fig. 18.22 or to the peak in Curve II. At frequencies well above/r , on

the other hand, the final terms contribute a phase shift of (« — 2) (x/2)

radians and a slope of n — 2 units. In combination with the phase and

slope contributions of the ideal cut-off this leads to the n unit slope and

corresponding w(x/2) radian phase shift which are appropriate for the

asymptote.

The expressions are made quantitative by choosingfr and the feedback

A in the useful band to satisfy two conditions. The first condition, obvi-

ously, is that the equations must correspond to an asymptote which has

the correct level of absolute gain as well as the correct slope. The second

condition requires that the minimum occurring in each gain characteristic

just below/r should fall on the zero gain axis. This arrangement permits

the maximum possible feedback in each case. It leads to stable circuits if

we suppose that the two phase characteristics have a differentially small

slope near the minimum point and cross 180° at the minimum. This per-

mits the resulting Nyquist plots to skirt just around the critical point, as

Figs. 18.24 and 18.25 show, so that the region of net loop gain and large

phase shift near/r does not indicate instability. The broken line arc in the

second figure is intended to represent the circular arc of infinite radius which

would correspond ideally to the gain peak and phase discontinuity at/r in

Curves II of Figs. 18.22 and 18.23.

The algebraic relations to which these conditions lead are somewhat

complicated and will not be reproduced here. For the characteristics of

equation (18-11) they indicate an increase in feedback over the maximum

available with the step type cut-off of about 4 d'b when n = 3. The feed-

* The integral relations of Chapter XIV evidently make it possible to derive solu-

tions in which the feedback in the useful band remains strictly constant. This possi-

bility is ignored here, however, since it results in much more complicated formulae and

the variation in feedback to which the actual expressions (18-10) and (18-11) lead is

insignificant in practical cases.
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back advantage rises gradually with n and reaches 8 db when n = 6. This

is evidently a meager return for the design complexity which would be

necessary to approximate such a cut-off. If the less extreme solution

furnished by equation (18-10) is followed the improvement in feedback is

about 1 or 2 db smaller. Neither solution can be used when n > 6, since

with larger values of n the phase shift at frequencies above the gain

minimum becomes so great that the Nyquist plot encloses the critical

point on the second trip around the origin.

Fig. 18.24 Fig. 18.25

18.8. Relative Importance of Tubes and Circuit in Limiting Feedback

The discussion of the last few sections has shown how the feedback
which can be obtained in any given amplifier depends upon the high-

frequency asymptote of the feedback loop. It is a matter of some impor-
tance, then, to determine how the major portions of the amplifier contribute

to the asymptote and what the effect of an improvement in any one of them
may be on the total feedback available. In the earlier discussion the

asymptotic loop was regarded as made up of two principal portions. One
consisted of the forward circuit proper and the other of the return path pro-

vided by the input and output circuits and the feedback circuit proper. As
we saw, the tubes furnish a positive upper limit on the asymptote, since we
can scarcely improve upon the result secured when the return path is a
direct short circuit from output plate to input grid, but within this limit a
great deal depends upon the skill of the design engineer in providing func-

tioning circuits in the return path without adding unduly to the asymptotic
loss. It is convenient to continue this discussion by showing in more detail

how the two factors affect the total feedback available.

The contributions of the forward circuit and the return path to the
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complete asymptote can be segregated most easily if we add a second

asymptote, representing the gains of the tubes working into their own para-

sitic capacities, to the diagram of Fig. 18.13. This leads to the result illus-

trated by Fig. 18.26. The tube asymptote is shown by the broken line. It

crosses the zero gain axis at the frequency ft = Gm/2wC, where Gm and C
are respectively the transconductance and capacity of a typical tube.

Since the ratio Gm/C is the so-called " figure of merit " of a tube we may call

ft the " figure-of-merit frequency" ^
for the forward circuit. The distance 40

'.

between the two asymptotes at/«is in-

dicated as the loss At . It is evidently

equal to the contribution of the return

path to the asymptotic loss at this

frequency. In the simplest and, for

feedback purposes, most favorable cir-

cuits, such as those shown in Figs. ^
18.6 and 18.10, the return path re-

duces at high frequencies to a capacity potentiometer and its asymptotic

contribution is merely a constant potentiometer loss. This is illustrated

in Fig. 18.26 by drawing the two asymptotes with the same slope but in

more complicated circuits we may, of course, expect the slopes to be

different.

The desired formula is obtained by expressing the asymptotic crossover

frequency/ in terms of/«, At, and n. This allows us to replace (18-7) by

4» = 40 log10 ^' -— • (18-12)
nf n

The first term of (18-12) shows how the available feedback depends upon

the intrinsic band width of the available tubes. In low power tubes

especially designed for the purpose it is possible to secure an/j as high as 50

or 100 mc, but if/ is small the first term will be substantial even if tubes

with much lower values of/( are selected. The second term of (18-12)

measures the sacrifice in feedback which can be ascribed to the rest of the

circuit. If the amplifier is well planned and the other requirements on it are

reasonably favorable it is possible for this term to be as small as 10 or

15 db. With present-day tubes the second term must necessarily be of this

order of magnitude if the amplifier is to have a reasonably large feedback

over a useful range of several megacycles. If the requirements on the

input, output, and (3 circuits are particularly severe, on the other hand, or if

the useful band is so narrow that adequate feedback can be obtained with-

out careful planning, the second term may be very much greater.
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18.9. Optimum Number of Stages in a Feedback Amplifier

In addition to ft and At, equation (18-12) includes the asymptotic

slope n. Since the tubes make no contribution to the asymptotic loss at

/ —ft we can vary n without affecting At by changing the number of tubes

in the circuit. This makes it possible to compute the optimum number of

tubes which should be used in any given situation in order to provide the

maximum possible feedback. If A t is small the first term of (18-12) will

be the dominant one and it is evidently desirable to have a small number of
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stages. The limit may be taken as n = 2 since with only one stage the

feedback is restricted by the available forward gain, which is not taken into

account in this analysis. On the other hand since the second term varies

more rapidly than the first with n, the optimum number of stages will

increase as At is increased. It is given generally by

At

8.68'
(18-13)

or in other words the optimum n is equal to the asymptotic loss at the tube

crossover in nepers.

The effect of choosing an n which is greater or less than the optimum

can be studied by setting n = X(At/S.6S). This permits (18-12) to be

replaced by

Am = 40 logxo^fo
~ [40 log10 X +

17 '4
^
~ X)

] • (18-14)

The first term obviously represents the feedback obtained when the opti-

mum number of stages is used and the second term the reduction in feed-

back which follows from the use of some number other than the optimum.

A plot of the second term is shown by Fig. 18.27. We see that there is
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comparatively little penalty in using any number of stages between half and

twice the optimum, but that larger departures are more serious.

Since feedback amplifiers are usually constructed with three stages in the

forward circuit we can conveniently illustrate these relations by consider-

ing under what circumstances a three stage amplifier is likely to give the

maximum amount of feedback. One extreme is represented by a very

broad band amplifier, such as a television amplifier with a 4 mc useful band.

With such a large

/

a reasonable amount of feedback is obtainable only if

ft is as large and At as small as possible. Let it be supposed, for example,

that the best obtainable values for these quantities are 80 mc and 18 db,

respectively. If we assume that n = 3 the maximum available feedback,

from (18-12), is 45 db. An appreciably smaller feedback is to be expected

in practice, when allowance is made for reasonable phase and gain margins.

With the assumed At the nearest integral n satisfying (18-13) is 2, but it is

clear from Fig. 18.27 that the use of a three stage circuit instead makes only

an insignificant difference in the result. A severe penalty will be incurred,

on the other hand, if we either use many more than three stages with the

same At or increase the optimum n by increasing At -

When the amplifier has a much narrower band it becomes relatively

much easier to secure a large feedback. Let it be supposed, for example,

that/j = 40 mc and that At
= 3 nepers, or 26 db, so that three stages is the

optimum number. Then in the three stage circuit the maximum feedback

is 68 db for a useful band of 400 kc, it is more than 90 db for a useful band

of 100 kc, and more than 130 db for a useful band of 10 kc. Except perhaps

for the first, these values lie beyond any range of normal practical interest.

They are not readily approximated in actual amplifiers principally because

the values of At which are usually encountered, in fact, are* much greater

than the value, 3 nepers, which was postulated in the computation. This,

of course, implies that the optimum number of stages is correspondingly

greater than 3. As a general rule of thumb, therefore, we can say that

when present-day high gain tubes are used the most appropriate number of

stages is likely to be two or three for amplifiers whose useful bands cover a

few megacycles but that for narrow band structures, extending perhaps to a

few hundred kilocycles, the available feedback can always be increased by

increasing the number of stages beyond three unless the feedback available

even with three stages is so great that there is no practical incentive to

secure further improvement in any event.

This discussion obviously ignores the fact that in many amplifiers the

number of stages which can be used is limited by economic considerations.

In other circumstances, however, the addition of extra stages to compen-

sate for a high At is frequently a comparatively simple means of increasing

the available feedback. An example is furnished by high power circuits,.
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such as radio transmitters, where circuit limitations are usually severe but
the cost of additional tubes, at least in low power stages, is relatively unim-
portant. As an extreme example, we may consider the problem of provid-

ing envelope feedback around a transmitter. With the relatively sharp
tuning ordinarily used in the high-frequency circuits of a transmitter the
asymptotic characteristics of the feedback path will be comparatively
unfavorable. For illustrative purposes we may assume that/a = 40 kc
and n = 6. In accordance with (18-7) this would provide a maximum
available feedback over a 10 kc voice band of 17 db. It will also be
assumed that the additional tubes for the low power portions of the circuit

have an ft of 10 mc* The corresponding At is 33 nepersf so that equa-
tion (18-13) indicates that the feedback would be increased by the addition

of as many as 27 tubes to the circuit. Naturally in such an extreme case

this result can be looked upon only as a qualitative indication of the direc-

tion in which to proceed. If we add only 4 tubes, however, the available

feedback becomes 46 db while if we add 10 tubes it reaches 60 db. The
ultimate feedback, when all 27 tubes are added, is given by the first term of

(18-14) as 66 db. It is to be observed that only a small part of the avail-

able gain of the added tubes is used in directly increasing the feedback.

The remainder is consumed in compensating for the unfortunate phase
shifts introduced by the rest of the circuit.

18.10. Amplifiers with Excess Phase Shift

Thus far it has been assumed that the loop phase shift of the amplifier is

the minimum consistent with the loop gain characteristic. In occasional

amplifiers, however, departures from the minimum phase shift laws are

encountered. • The departure can usually be represented by adding a phase
characteristic which is proportional to frequency to the normal minimum
characteristic, and only added characteristics of this type will be considered
here. The additional phase shifts are usually trivial if we consider the
useful band alone. They may be worth taking into account, however,
when we give consideration to the fact that the effective band width of a
feedback amplifier, for design purposes, is many times its useful band.

* In tubes operating at a high power level ft may, of course, be quite low. It is

evident, however, that only the tubes added to the circuit are significant in interpret-

ing (18-13). The additional tubes may be inserted directly in the feedback path if

they are made substantially linear in the voice range by subsidiary feedback of their

own. This will not affect the essential result of the present analysis.

f It is, of course, not to be expected that the actual asymptotic slope will be con-

stant from 40 kc to 10 mc. Since only the region extending a few octaves above 40 kc

is of interest in the final design, however, the apparent A t can be obtained by extrap-

olating the slope in this region.
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Departures from the minimum phase shift laws in the feedback loop may-

occur for a variety of reasons. Some of the principal causes are given in the

list below.

1. It is well known that the response of an electrical system can be

studied exactly only by means of the electromagnetic field equations.

The circuit laws are approximations which work well when the wave-

length of the signal employed is very much larger than the geometrical

dimensions of the apparatus, but which become erroneous when these dis-

tances are comparable. In the design of a feedback loop, this means that

difficulties with additional phase shifts are to be expected whenever the dis-

tance around the loop is not small compared with the wavelength corre-

sponding to the highest effective design frequency.

As an example, let it be supposed that the distance around the loop is one

meter. This is the wavelength of a 300 mc wave. Since one full wave

corresponds to a phase retardation of 360°, we can consequently say

roughly* that the actual loop phase characteristic contains an added linear

component having a slope of 1.2° per mc. In a narrow band amplifier this

much excess phase is insignificant, but if the useful band is of television

size, so that the effective design band extends over perhaps SO or 100 mc,

it constitutes an important problem. It can evidently be dealt with most

directly by building the amplifier as compactly as possible, so that the

distance around the loop becomes much less than the one meter originally

postulated. Conversely, much more excess phase shift is to be expected

when the feedback path is very long, as it might be, for example, if we
attempted to feed back around a radio transmitter through pick-up from an

antenna located at some distance from the transmitter proper.

2. A second general cause of excess phase is found in the transit times of

vacuum tubes. The transit time of the tube is the time required for the

passage of electrons from cathode to plate under the influence of the B
battery voltage and depends broadly upon the battery voltage and the

spacing between electrodes. It can be treated as the equivalent of a linear

phase characteristic, just as we treat the " delay " of an ordinary electrical

* The reason why the computation may not lead to an accurate result can be under-

stood from a consideration of the transmission down an, ordinary transmission line.

On the average, the phase characteristic is the straight line corresponding to the delay

of the circuit. If the transmission line is badly mismatched at both ends, however,

the actual phase characteristic ripples about the linear characteristic, intersecting it at

the quarter wave points. Thus the actual characteristic may depart appreciably from

the linear characteristic, especially in the region below the first quarter wave point.

The various components of the feedback loop, when analyzed in terms of distributed

constants, may obviously present a broadly analogous situation.
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system. In present-day tubes adapted for high-frequency operation the

corresponding phase angle may be as little as a few tenths of a degree per

megacycle per tube. Even so, however, the total phase shift may be serious

if we add the phase shifts of several tubes and consider effective bands of the

order of 50 to 100 mc.

3. In occasional amplifiers excess phase shift may appear accidentally

through the use of a non-minimum structure in some part of the loop.

These difficulties are usually easy to avoid. An example is furnished by
Fig. 18.28, which represents a shielded input transformer used as part of a

series feedback amplifier. Ideally, the transformer enters the feedback

loop only as a two-terminal impedance inserted in series between the /3

Fig. 18.29

circuit and the input grid. As the drawing shows, however, there is dis-

tributed capacity between the transformer high winding and the shield. If

the shield is connected to ground, as shown by broken line I, this capacity in

association with the inductance of the high winding produces a non-

minimum phase four-terminal network with properties very similar to those

of a transmission line, and a large amount of excess phase will result. This

difficulty is avoided by connecting the shield to one end of the high winding,

as indicated by the broken line II.

4. Departures from the minimum phase characteristic may also be pro-

duced in some amplifiers by parasitic local feedback paths associated with

the individual tubes in the forward circuit of the amplifier.* An example

is furnished by the triode with parasitic grid-plate capacity Ci shown by
Fig. 18.29-f The circuit is supposed, for simplicity, to be energized by a

generator of zero internal impedance and the following interstage is taken

as an elementary capacity-resistance combination. We notice that the

signal can pass to the following interstage by either of two paths. The

* Strictly speaking, amplifiers of this type are multiple loop structures and do not

fall in the class of circuits considered in this chapter. They are included in the present

list on the assumption that the local feedbacks are small enough to make the single

loop analysis adequate.

I The author is indebted to his colleague, Dr. C. R. Burrows, for this analysis.
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first is the normal path directly through the tube while the second is the

path through Cx which would exist even if the tube were dead. The first

path is, of course, dominant at low frequencies but it becomes less efficient

than the second when the frequency is made sufficiently great. Moreover,

the outputs of the two paths are broadly of opposite sign, because of the

phase reversal in the tube, and therefore tend to cancel. These, however,

are the general conditions which were shown in Chapter XI to lead to trans-

mission of the non-minimum type and we may therefore expect that the net

phase characteristic will include an all-pass phase in excess of the minimum.

The situation illustrated by Fig. 18.29 can be treated analytically by

writing the voltage gain E2/E\, as

£2 GmR .

io>CiR
+ (18-15)

1 + i«(Ci + C2)R ' 1 + f'«(Ci + C2)R

where Gm is the transconductance of the tube and the two terms on the

right-hand side represent transmission through the two separate paths.

The equation can be rewritten as

E2 _ Gm + iwCi Gm — iwCi
^

Ei
= ~

1 + ««(Ci + C2)R Gm + iud

'

(18-16)

In this form the second factor, which corresponds to an all-pass structure of

the elementary type shown by Fig. 11.11 of Chapter XI, represents the

excess phase. At moderate frequencies the excess appears as a linear

characteristic with a slope of 7.2 X 10
8 (Ci/Gm ) degrees per mc.

5. The final source of excess phase is not due, strictly speaking, to a

departure from minimum phase shift configurations, but it is convenient to

include it in this list for purposes of discussion. It will be recalled that

we have thus far assumed that the ^
asymptotic characteristic of the ampli-

fier would be fully established, so that

it could be represented by a simple

straight line on logarithmic paper, by

the time design control of the feed-

back loop was finally relinquished. In

exceptional amplifiers this may not be

true and an excess phase term should

be used to represent subsequent changes

in the behavior of the asymptote. As an example, let it be supposed

that JV5 and iVjj in Fig. 18.6 reduce to resistances at high frequencies

and that the capacities C5 and C6 which parallel them are extremely small.

If we neglect C5 and C$ entirely the loop gain characteristic takes the form

shown by Fig. 18.30, where ABC is the asymptotic characteristic with the
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two capacities absent. The actual high frequency behavior, with Cs
and C& included, follows the broken line path ABD. We can evidently
represent this situation most simply by supposing that ABC is the asymp-
tote, for purposes of analysis, and that the divergence between BC and BD
will be treated by adding a corresponding linear phase shift to the loop

characteristics at lower frequencies. The " excess " phase shift in this case

will, of course, be negative. The broken line BE represents a modification

leading to an increased loss at extremely high frequencies, and a correspond-
ing positive excess phase.

18.11. Adjustment of Overall Cut-off Characteristic to Compensatefor Excess

Phase

It will be recalled that the sharp changes in slope at the ends of the
horizontal step in the overall loop gain characteristic produce linear phase
characteristics which can be made to cancel one another by choosing the

correct ratio for the terminating frequencies of the step. Since the excess

phase characteristic is also assumed to be linear we can evidently cancel it

out also by making an appropriate change in the step length. In terms of

the notation of Fig. 18.13, for example, the phase characteristics corre-

sponding to the changes in slope at the ends of the step are respectively
— (4/V) (///&) and (2»/x) (///<,)• Ifwe specify the excess phase characteris-

tic, from whatever source, by means of the frequencyfp at which it would
equal 2»/x radians, if extrapolated, the required relation therefore becomes

4 / In f In f--T+— f + — 7=0, (18-17)
" Jb T Ja TT Jp

from which/j is fixed in terms of/ and/p by the equation

*-hffr; <18-' 8 >

Since the cut-off proportions below/;, are not affected by these changes,

equation (18-18) evidently implies that formula (18-7) for the maximum
available feedback should be rewritten in the general case as

Am = 40 log104 T~r- (18-19)
nfofa +fp

Thus the effective asymptotic frequency in limiting feedback is the " paral-
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lei combination " of/ and /p. If we make the same changes in (18-12)

we secure

A -"*';£/.+/'£''»• -¥'• (18-20)

This equation is of particular interest for extremely broad band amplifiers,

where the fundamental physical limitations are found in the figures of merit

and transit times of available tubes. We notice that when At is very

small the figure of merit frequencyft and the transit time frequencyfp are

of equal importance in limiting the available feedback. As the circuit loss

At grows, however, an improvement in/, becomes more effective than an

improvement in/p .

If the amplifier is to be built with prescribed margins the procedure is the

same, except that since a gain margin shifts the step of the cut-off to a

slightly higher frequency it makes the importance of the excess phase

characteristic somewhat greater. One modification should, however, be

introduced when the amplifier is to trans-

mit a geometrically narrow band. Here it

is desirable to break down the total excess

phase characteristic into a constant, repre-

senting the phase displacement at the cen-

ter of the band, and a variable portion o—\JUL>—

]

—° o-A/\AA-

representing the phase variation over the

effective design band on each side of the

center. The constant is treated by cross-

ing terminals, if necessary, and adding °

either a short length of line or some rela-

tively unselective lumped constant structure, such as one of those shown by

Fig. 18.31, to make the net phase displacement at the center of the band

equal to an integral number of revolutions.* This leaves only the variable

characteristic to be considered in converting the actual band-pass amplifier

to an equivalent low-pass structure of the type described in this chapter.

The principle of conservation of band width is maintained for this part of

the total phase shift. In other words, an excess phase characteristic having

a given slope in degrees per megacycle will be equally limiting for a band

of a given breadth, in megacycles, whatever the absolute location of the

band in the frequency spectrum may be. In extreme cases this arrange-

ment may evidently lead to a Nyquist plot which encircles the origin many

* See R. C. Shaw, U. S. Pat. No. 2,210,503.
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times above and below the effective design range, but if the amplifier is

properly cut off within the effective range, the stability of the system is not

jeopardized.

18.12. Relation between the Loop Design and the ExternalGain ofthe Amplifier

The discussion thus far has been concerned with the most desirable shape

for the overall loop cut-off characteristic without regard to the portion of

the loop in which the shaping is to be obtained. It is clear, however, that

the loop characteristic can ordinarily be adjusted most easily by the inter-

stage networks which, unlike the input and output circuits or the /3 circuit,

are independent of any of the other characteristics of the amplifier. In the

absence of any special reasons to the contrary, it is most logical to begin the

overall amplifier design with the design of the input and output circuits,

paying especial attention to impedance and volume performance require-

ments, for which these circuits are controlling. The contributions of the

input and output circuits to the external gain can then be computed and a

ft circuit chosen to give the required final gain characteristic. The inter-

stage networks are designed as a last step to furnish the difference between

the overall loop characteristic and the loop characteristic supplied by the

input, output, and /3 circuits.

This general procedure must be qualified in one respect to take account

of the fact that the impedance, external gain and volume performance

characteristics are normally specified only within the useful band. Thus
there is, at least on paper, a certain element of arbitrariness in the way in

which the various components of the feedback loop enter into the overall

loop characteristic in the cut-off interval. On the other hand, as we
approach higher and higher frequencies and parasitic elements become more
and more significant, it is increasingly difficult to secure effective design

control of any one of the components over a very wide range. Thus it is

important to allocate the overall characteristic among the various com-

ponents with reasonable care if difficult or impossible design problems are to

be avoided.

The allocation of the loop cut-off characteristic among the various com-
ponents beyond the band is governed, broadly speaking, by the external

gain requirement within the useful band. In general, the cut-off will be

shaped chiefly by the interstage networks when the gain is relatively low

and chiefly by the /3 circuit when the gain is relatively high. An illustra-

tion is furnished by the series feedback amplifier shown previously in

Fig. 18.10. If a low external gain is required in the useful band the imped-

ance of the feedback network N3 must be correspondingly high. This evi-

dently implies that the feedback network will be governed in the cut-ofF
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interval principally by the prescribed parasitic capacity C7 in shunt with it,

and cannot be put under effective design control. On the other hand, the

low |3 circuit loss requires only a low interstage gain to give the prescribed

loop gain and since low gain interstages are comparatively flexible they can

be used to control the loop characteristics in the cut-off interval as well as

in the useful band. Conversely, if the required external gain is high the

interstage networks must be approximately of the maximum gain type*

and will have determinate characteristics outside the band. The /? circuit,

however, will be well under our control, since the high external gain corre-

sponds to a feedback impedance so low that C7 is no longer hampering.

Since maximum gain interstages cut off rapidly outside the band the

required feedback impedance will evidently be one which increases gradu-

ally through the cut-off interval, in order to bring the total loop cut-off rate

within safe limits.

The situation can be studied quantitatively by means of equation (17-18)

of the preceding chapter. It will be recalled that this equation was

developed to show how much it was necessary to reduce the gain of an inter-

stage below the maximum possible level within the useful band in order to

provide any prescribed interstage phase shift less than 90° beyond the band.

In the present situation the same relation can be used backward. If we

begin by comparing the interstage gain necessary for the required feedback

with the maximum possible interstage gain the formula gives the integrated

phase margin which will be exhibited by the interstage networks and from

this it is easy to determine the phase margin which must be derived from

the rest of the circuit. For example, if a three-stage n circuit is used, the

phase angle of the two interstage circuits in the cut-off interval will be

approximately 180°. Since the total loop phase shift is also about 180°

the net phase shift of the return path from output plate to input grid must

be roughly zero. The loop phase margin can be obtained either by using

interstage circuits with phase angles slightly less than 90° or by using a

return path with a negative phase angle. The reduction-in-gain integral

gives the fraction of the total which must be obtained from the interstages.

* It is evident here that if the external gain is very high even maximum gain inter-

stages may not be sufficient to supply it and also the feedback which would otherwise

be obtainable with the given asymptotic conditions. This is an obvious physical

limitation which applies to all the analyses of this chapter and requires no further dis-

cussion. It should also be noticed that in the particular circuit of Fig. 18.10 changes

in external gain do not affect the asymptote, and therefore the available feedback.

This tends to be true whenever pains are taken to choose configurations with favorable

asymptotes, but it may not hold in other circumstances, as when the gain change is

made by the addition of a simple loss pad in the /3 circuit.
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Once this allocation has been made the areas under the phase margin plots

can be distributed as functions of frequency in any way which seems likely

to give simple network designs. In general, it is convenient to employ the

interstage phase margin near the edge of the useful band, where use may be

made of the shaping elements required within the band, and to rely upon the

rest of the circuit at more remote frequencies, where adjustments can be

made with considerable freedom without marring the precision of the exter-

nal gain characteristic in the useful band. An illustrative design involving

calculations of this sort is given in the next chapter.



CHAPTER XIX

Illustrative Designs for Single Loop Feedback Amplifiers*

19.1. Introduction

This chapter consists of a number of examples of the overall feedback

loop design method advanced in the preceding chapter. An attempt has

been made to choose designs which will illustrate, for a variety of situations,

some of the detailed ways in which the theoretical overall cut-off character-

istic can be realized. In view of the enormous range of possibilities, how-

ever, many other techniques can, of course, also be used. In each design

example attention is focused primarily on the feedback loop problem. The

other aspects of the amplifier design are described only briefly, and some-

times in an oversimplified fashion. Two of the designs include subsidiary

feedback on individual tubes in addition to the principal loop feedback.

These are treated, for simplicity, as single loop structures although they do

not, of course, meet the strict requirements of the definition advanced in the

last chapter.
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19.2. Feedback "Designfor a Frequency Modulation Receiver

The first example is the feedback design for the frequency modulation

receiver shown diagrammatically in Fig. 19.1.f If we suppose for the

* Most of the designs in this chapter are due to the author's colleagues R. L. Dietz-

old, H. G. Och, and W. H. Boghosian. The double feedback path design is due to

J. G. Kreer and E. H. Perkins, the forward circuit of the radio transmitter with

envelope feedback to C. R. Burrows and A. Decino, and some of the lower cut-off

designs to J. M. West.

t This circuit is the invention of J. G. Chaffee— see B. S. T. J., July, 1939,
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moment that terminals AA' are open, the " frequency modulated oscilla-

tor " in the drawing becomes an ordinary fixed frequency local oscillator,

and the circuit reduces to a conventional superheterodyne receiver for FM
signals. The conversion circuit is the usual " slope " network which
changes frequency modulated to amplitude modulated signals, and the

detector is an ordinary rectifier which recovers the audio signal from this

amplitude modulated wave. When the feedback loop is closed, the local

oscillator frequency is varied in accordance with the audio signal and this

frequency variation is superposed upon that of the incoming wave in trans-

mission through the intermediate frequency stages.

A detailed exposition of the operation of this device is beyond the scope

of this book. Briefly, however, it may be recalled that external inter-

ference in an FM signal can be resolved into two components, one repre-

senting frequency modulation and the other amplitude modulation of the

incoming wave. The first of these cannot be separated from the frequency

modulation representing the signal proper, but its interfering effect can be
made very small by using a very large frequency swing to represent the

signal. The amplitude modulation component is, however, more serious.

Since the final detector is an amplitude modulation device, this component
may evidently appear in the final audio output, and be large enough to be

important in the signal-to-noise ratio for the system. In the orthodox

Armstrong circuit, consequently, the amplitude modulation due to inter-

ference (or fading) is first eliminated by passing the incoming wave through

a volume limiter which restricts it to a nearly constant amplitude.

The feedback circuit in Fig. 19.1 serves as an alternative to the volume
limiter. Its operation can be understood most readily if we think of it as

an ordinary feedback amplifier in which n is the voice frequency output

per unit frequency displacement at the modulator terminals and j8 is the

frequency displacement of the local oscillator per unit voice frequency out-

put. This is equivalent to measuring the signal by current or voltage in

the voice frequency parts of the circuit and by frequency displacement from

the carrier in the intermediate frequency stages. From these definitions,

the product jt/3 is the voice frequency transmission from terminals AA'
around the complete loop and back to AA' again. In the ordinary feed-

back amplifier, the signal intensity in the early stages of the forward circuit

is reduced by feedback, and it is necessary to make a corresponding increase

in the forward circuit gain if the input signal level and output power are to

be kept constant. Here, similarly, the FM feedback reduces the frequency

swing in the intermediate frequency stages. The " gain " of the forward

circuit is increased correspondingly by increasing the slope of the conversion

circuit to provide the same efficiency of conversion from frequency to

amplitude modulation with the reduced frequency swing.
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In these terms the reduction, by the feedback circuit, in the effects of

amplitude modulation due to external sources can be treated exactly as the

reduction, by feedback, in forward circuit noise in an ordinary amplifier was

treated in Chapter III. Just as in that analysis, we find that if we regard

<ib

40

Kiloc

Fig. 19.2

the voltage appearing in the detector due to amplitude modulation of the

incoming signal as an extraneous noise generator applied at that point, its

effects are reduced through feedback in the ratio (1 - mP) : L As an alterna-

tive, we may notice that since the voice frequency output is proportional to

the amplitude as well as the frequency displacement of the modulator out-

Fio. 19.3

put, amplitude changes in the incoming signal may also be regarded as

changes in m- These again are reduced by feedback in the ratio (1 — h0) : 1.

Fortunately, a detailed understanding of the operation of the high fre-

quency portions of the circuit is not necessary for the feedback design

problem. If we view the circuit from terminals AA' , we are interested

only in shaping the transmission characteristic around the loop at voice
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frequencies to conform with the ideal cut-off. Since the contribution of the
high frequency portions of the structure can be determined by measure-
ment, the problem reduces to that of finding a passive equalizer which can
be inserted in the /3 path to give the required total characteristic. This is

the simplest as well as one of the most common forms in which a feedback
design problem may be presented.
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Fig. 19.4

The measured gain and phase characteristics between the input terminals
of the local oscillator and the output terminals of the rectifier are shown by
Curves I of Figs. 19.2 and 19.3. It will be seen that the gain becomes
zero at about 50 kc and that the high frequency slope of the gain characteris-
tic may be estimated at about 36 db per octave. These figures may be
taken to represent the asymptotic performance of the complete loop if we
suppose that the loss introduced by the equalizer at high frequencies will

not be great. They indicate, from equation (18-7) of the preceding chap-
ter, that the maximum available feedback will be about 36 db for the
prescribed useful band of 4 kc. When allowances are made for phase and
gain margin, the expected feedback may be taken as 25 db. The ideal
cut-off characteristics for this feedback with a phase margin of 30° and a
gain margin of 2 db* are shown by Curves II of Figs. 19.2 and 19.3.

The rest of the design consists in the simulation of the difference between
the measured loop gain characteristic and the theoretical gain characteristic
by an equalizer. This difference, expressed as a loss, is shown by the solid
curve of Fig. 19.4 and the loss actually obtained from the equalizer by the
broken curve of the same figure.f The equalizer structure itself is shown by

*A small gain margin is assumed in the design since the experimental circuit
included a gain control by which the margin could be adjusted.

tThe low-frequency behavior of the broken curve in this figure, or in Figs. 19.2
and 19.3, is explained by the presence of a blocking condenser in the feedback path.
This element is not shown explicitly in Fig. 19.5 since only the high frequency charac-
teristic is of immediate design interest.
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Fig. 19.5.* The complete loop characteristic with the equalizer included

is shown by the broken lines in Figs. 19.2 and 19.3.

The feedback of 25 db obtained by the design is adequate in this applica-

tion. It is interesting to notice, however, that the assumed asymptotic

characteristic for the loop corresponds to a very high " circuit loss " At .

Thus it follows from equation (18-20) of the preceding chapter that it

should be possible to secure much more feedback over the given band, or

the same feedback over a wider band, if we add several stages of vacuum

tube gain as well as a passive equalizer in the feedback circuit. A design

including tubes can be obtained by following principles somewhat similar

to those used here, although it will naturally be much more complicated.
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19.3. Envelope Feedbackfor a Radio Frequency Transmitter

The second example consists of the feedback design for a low-power radio

transmitter transmitting multiplex signals on an ultra short wavelength.

The circuit is of particular interest as an illustration of the principles devel-

oped in the preceding chapter on the optimum number of stages for a feed-

back amplifier.

The transmitter is shown diagrammatically in Fig. 19.6. The low-

frequency signal is applied at the left. It consists actually of one group of

12 telephone channels. With the standard 4 kc channel spacing the signal

occupies only 48 kc but the useful band is assumed for design purposes to

extend to 100 kc to permit the transmitter to carry a second 12-channel

group if desired. The signal is first stepped up to its final power level by

means of the signal amplifier, and it is then applied to the antenna at radio

frequencies by the modulator and local oscillator shown in the drawing.

The carrier frequency is 141 mc. A portion of the output is passed through

the demodulator and reapplied at the original signal frequency to the input.

* The tubes in Fig. 19.5 were part of the original circuit. The equalization is

obtained by replacing the constant resistance interstage which connected them origi-

nally by the general impedance shown in the figure. The absolute level of gain

depends upon a gain control elsewhere in the circuit.



494 NETWORK ANALYSIS Chap. 19

This provides envelope feedback around the complete structure. The
feedback is useful chiefly in suppressing distortion due to inter-channel

modulation which would otherwise appear in a transmitter carrying so

many channels. The desired value of feedback is 30 or more db.

All parts of the loop enter to some extent into the determination of the

envelope feedback characteristic. The detailed shaping of the loop charac-

teristic, however, is most conveniently obtained in the circuits of the signal

amplifier. The circuits associated with the modulator are not very suit-

Came
7708 283 H

0^=10,000 G»=7000

100,000
Demod

Fig. 19.7

able for this purpose because of the high frequency and power level at which

they operate. Neither of these objections applies to the circuits associated

with the demodulator. We must observe, however, that the demodulator is

effectively part of the /3 circuit. Evidently, the reduction in interchannel

modulation which is desired from the complete system will be realized only

if the demodulator operates very accurately as a linear rectifier without

introducing unwanted modulation products. The problem of providing a

demodulator meeting these conditions is so difficult that it is undesirable to

complicate it by introducing any other considerations in the design of this

part of the structure.

A preliminary layout for the transmitter on this basis is shown by

Fig. 19.7. A 283H tube has been chosen for the output power stage for the

signal amplifier. The output impedance of the tube, consisting of 7000

ohms* in parallel with the plate capacity, is selected to secure the most

efficient delivery of power from the tube, and should not be regarded as one

of the circuits at our disposal in shaping the ju/3 characteristics. The output

stage is preceded by a 7708 tube giving high gain but relatively low power

* This is not an inserted resistance; it represents the loading on the 283H tube due

to the modulator stage.



ILLUSTRATIVE DESIGNS 495

to provide the rest of the forward gain for the circuit. The interstage net-

work N is reserved in this tentative design for the solution of the loop

shaping problem.

The networks associated with the modulator and demodulator need not

be described in detail. They are represented in the drawing by much sim-

plified versions of the actual structures. Broadly speaking, the modulator

OT)I 04 04 0.1 2 04 Ofc 1

Fig. 19.8

-To

networks consist of resonant circuits tuned to the carrier, the tuning being

broad enough to prevent them from adding excessively to the asymptotic

loss of the loop, as seen from the low-frequency parts of the circuit. The

feedback path is assigned a loss of about 60 db from the modulator termi-

nals to the input grid of the signal amplifier. About 30 db of this loss is

furnished by the coupling circuit between modulator and demodulator.

This places a very light load on the demodulator, which favors its opera-

tion as a linear rectifier. The remaining 30 db is furnished by the poten-

tiometer of resistances and capacities connecting the demodulator to the

input circuit. The potentiometer impedances are also chosen to provide

maximum linearity of operation in the demodulator.

The loop transmission of the structure shown in Fig. 19.7 measured from

the grid of the output tube to the grid of the input tube is given by Fig. 19.8.

From this curve, and the known data for the transconductance and inter-

stage capacity for the first tube in Fig. 19.7, we can easily estimate what

the asymptotic performance of the complete loop will be. We find that the

asymptote has a slope of 4 units, or 24 db per octave, and crosses the zero

gain axis at about 1.5 mc. With the help of equation (18-7) of the pre-

ceding chapter and these figures the maximum available feedback over the

nominal 100 kc signal band is found to be 47 db. This is more than the

required feedback, but the excess is too small to provide large gain and
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phase margins.* It is consequently desirable to review the structure in an

attempt to secure an improved asymptote before the detailed shaping of the

fifi characteristic is undertaken.

Inspection of the circuits associated with the modulator and demodulator

shows several ways in which an improved asymptotic performance might
be obtained. For example, the high-frequency path in the present circuit

includes as series elements the small capacity in parallel with the 100,000

ohm resistor in the demodulator output. If the resistor were replaced by a

filter, exhibiting an impedance of 100,000 ohms at low frequencies but

reducing to a capacity at high frequencies, the contribution to the asymp-
totic loss secured from this part of the circuit might evidently be decreased.

We might also modify the coupling network between the modulator and
demodulator to produce a decreasing loss at frequencies remote from the

band. These are possibilities which might be exploited if no better alterna-

tive were available, but they evidently lead to circuit complications which

it is desirable to avoid if possible.

A simpler method of improving the asymptotic characteristic in the

structure under consideration is obtained by increasing the number of volt-

age stages in the signal amplifier. The 7708 tube already used for one stage

of the amplifier has a " figure of merit " frequency ft of about 50 mc.f
From the known asymptote for the present loop the circuit loss At at this

frequency is about 120 db, or 14 nepers. It follows from the discussion in

the preceding chapter that if we add more 7708 tubes the available feedback

will reach a maximum when enough tubes have been added to make the

asymptotic slope equal to 14 units. Since the asymptotic slope in the

circuit as it stands is 4 units, this would require the addition of 10 more volt-

age stages. The feedback obtained under these conditions is given by the

first term of equation (18-14) of the preceding chapter and is equal to

69 db. The feedback obtained with any other number of stages in the

forward circuit can be determined by subtracting the amounts indicated by
the corresponding Fig. 18.27 in the preceding chapter from this limit. Thus,
for example, in the circuit as it stands before any extra tubes are added,

we have X = 0.286 and the available feedback becomes 69 — 22 = 47 db.

* In the structure of Fig. 19.7 the available feedback is, in fact, still more severely

limited by the amount of gain which can be obtained from the first tube. This

difficulty is ignored here, since in the final circuit the available forward gain is more
than adequate for the feedback requirement.

t This figure refers to a number of 7708 tubes in tandem. A considerably lower

/

(

is realized in the single tube of Fig. 19.7 because of the large contribution of the inter-

stage capacity furnished by the succeeding power tube and the decreased transcon-

ductance obtained from the tube when it delivers sufficient power to drive the final

stage.
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This agrees with the result obtained previously from a direct computa-

tion of the asymptotic performance of the structure. If we add two

stages to the present circuit we find X = 0.43 and the available feedback

is 60 db. This choice was decided upon for the actual design, since

the improvement in available feedback is quite adequate to give a con-

venient loop characteristic and the further advantage obtainable by adding

more than two stages is comparatively small.

7708
Gm =12,000

7708

Fig. 19.9

With the figure of 60 db for the maximum available feedback at hand, the

feedback which can be realized with any given phase and gain margins is

readily determined from equation (18-9) of the preceding chapter. In this

design, the margins were chosen as 30° and 12 db respectively and lead to a

useful feedback of 38 db. The rest of the design consists merely in shaping

networks which will provide the difference between the characteristic of

Fig. 19.8 and an ideal cut-off characteristic corresponding to these values.

With the two extra stages added to the amplifier, we now have, of course,

three interstages among which the difference characteristic is to be allo-

cated. The arrangement finally chosen is shown by Fig. 19.9. The last

interstage, which has the highest power level, is made very simple, and it is

also assigned most of the gain in order to make the power level in the earlier

stages quite low. The first two interstages are essentially " trap circuit
"

designs of the type described in connection with Figs. 13.10 to 13.13 of

Chapter XIII. The very low level of gain which these interstages are

required to furnish permits the trap circuits to be designed at a very low

impedance level so that they are effective in controlling the loop characteris-

tics over a broad frequency range beyond the useful band.

The gain and phase characteristics obtained from the three interstages
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are shown by Fig. 19.10,* and the total loop gain and phase shift by-

Fig. 19.11. It will be seen that a feedback of about 35 db in the useful band
is realized. This compares with the theoretical feedback of 38 db computed
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Fig. 19.10

earlier. The slight difference may be attributed to the fact that the design

does not follow the sharp corner in the theoretical characteristic at the edge

of the useful band accurately. No attempt was made to procure a precise

match in this region, since adequate feedback was obtained without it.

0.02 0.04 0.06 0.1 0.2 0.4 0.6 1.0 . 2.0 4.0 6.0 10.0

Fig. 19.11

* The relatively simple characteristics obtained from the second interstage, in spite

of the complexity of the network, are explained by the fact that this structure was

actually intended to be adjustable. The characteristics shown correspond to a refer-

ence setting for which the effect of the trap circuit is not prominent.
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19.4. Illustrative Design of an Amplifier with a Double Feedback Path

The next example is an amplifier design for the type J system.* Since

the circuit is relatively complicated it will not be described in detail. It

does, however, afford a very interesting illustration of the salient role which

the asymptote plays in determining the amount of feedback available and

will be considered briefly from this point of view.

Input Output-

Line Terminals LineTerminals
o 9 9

Fig. 19.12

The amplifier under consideration was intended to serve as a repeater

in the type J open wire carrier system. It consists of three principal parts:

the forward circuit, an outer or principal /3 path, and an inner fi path.

The general arrangement was shown schematically by Fig. 18.1 of the pre-

ceding chapter. If we ignore the inner @ path for the moment, the struc-

ture is given in more detail in Fig. 19.12. The /S circuit includes a gain

control and an equalizer to compensate for variations in line attenuation.

Otherwise the amplifier is characterized chiefly by the fact that the feed-

back is of the low side hybrid coil type at both ends. This feedback con-

nection is particularly appropriate for the type J system, where one of the

controlling problems is that of providing very good impedance matches

everywhere in the system to avoid reflection crosstalk. As the discussion

* This is a reference to a carrier telephone system for open-wire lines, operating in

the frequency range between 30 and 140 kc. For a more complete description see

B. W. KendaU and H, A, Affel, B.S.T.J., Jan., 1939.
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of previous chapters showed, a hybrid coil feedback at input or output per-

mits the active impedance of the amplifier to be controlled by the balancing

network so that it can be matched very accurately to the characteristic

impedance of the line. Low side rather than high side feedback is chosen

<M>4 006 0.1 OT 04 06
Fig. 19.13

for this application because with the low side connection most of the hybrid

coil can be regarded effectively as part of the /i circuit and the impedance

match to the line consequently remains good even if manufacturing varia-

tions in the coil are large.

Although the choice of the low side hybrid coil circuit is most satisfactory

for the operating requirements on the amplifier, it carries with it one

1.04 0.06 0.4 0-6

Fig. 19.14

unfortunate consequence. Since the feedback path goes through the coils,

their leakage inductances appear as series elements in the asymptotic loop

and the asymptotic characteristics of the circuit are consequently much less

favorable than those obtained with most other types of feedback. This is

illustrated by Curves I of Figs. 19.13 and 19.14, which represent the gain
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and phase characteristics for the loop composed of the forward circuit and

the outer circuit in Fig. 19.12 with the element values as they were

established in the final design. The estimated asymptote for this loop is

shown by the broken line I' in Fig. 19.13. As the curves stand, they

provide the desired feedback (45 db) in the useful band extending up to

150 kc. The circuit is, however, unstable, since the phase shift crosses 180°

before the loop gain reaches zero. Stability might,

of course, be retained by redesigning the circuit

with a lower feedback. With an asymptote as un-

favorable as the one indicated in the drawing, how-

ever, a sacrifice of at least 10 or 15 db in feedback

would be necessary to secure a stable circuit.

This difficulty is overcome by the introduction

of the inner feedback path. The structure used

for the inner path is shown by Fig. 19.15. It is

connected directly between the output plate and

the input grid. The properties of the circuit

are broadly similar to those of a high-pass filter.

Within and near the useful band its attenuation is so great that the current

fed through it can be neglected in comparison with the feedback through

the outer path. Thus computations of the gain and impedance character-

Fio. 19.15

Fig. 19.16

istics of the amplifier based upon the outer circuit remain valid after the

inner path is added. At higher frequencies, on the other hand, the inner

path becomes more and more transparent until it constitutes an effective

by-pass on the outer circuit at frequencies for which the asymptotic loss

of the outer circuit is large.

These relations are shown in more detail in Figs. 19.16 and 19.17. The

first curves in the two figures give the loss and phase corresponding to trans-
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mission from the output grid to the input grid through the outer circuit.

The second curves give the corresponding quantities for transmission

through the inner circuit, while the third curves represent the net trans-

mission from output grid to input grid through the two paths in parallel.

The third curves are, of course, the ones of interest in a stability calcula-

tion, since from the point of view of the tubes all possible feedback paths

0.4 0.6 1

Fig. 19.17

can be lumped together as a single four-terminal network, without regard to

their relations to the input and output lines. With the design elements as

chosen, the transition from the region in which the outer path is dominant
to the region in which the inner path is dominant occurs at about 1 mc.
The total transmission characteristic of course depends upon the phase as

well as the magnitude relations between the two paths. In this design the

phase difference between the paths at the transition point is 140°, which
increases the net transmission loss above that of either component. With
a phase difference of 120° all three loss curves would cross at the transition

point.

The effect of the addition of the inner /3 circuit on the overall /u/3 charac-

teristic can be found by correcting the first curves in Figs. 19.13 and 19.14

for the difference between the outer /3 circuit transmission and the resultant

transmission in Figs. 19.16 and 19.17. This leads to the results shown by
Curves II in Figs. 19.13 and 19.14. It will be seen that the amplifier is now
absolutely stable. The improved asymptote secured by the introduction

of the inner circuit is shown by the second broken line in Fig. 19.13.

19.5. Amplifiers with Band-Pass Transmission Characteristics

The illustrative designs presented thus far in the chapter have been of

the " low-pass " type. In other words, the useful band extended to such

low frequencies that it could be regarded as including direct current, so far
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as the characteristics near or beyond the upper edge of the band were

concerned. In accordance with the principles described several times

previously, amplifiers transmitting relatively narrow bands may be treated

as low-pass amplifiers by means of the low-pass to band-pass transforma-

tion described in Chapter X. It will be recalled that the band-pass

amplifier and its low-pass equivalent have the same breadth of useful band

in cycles per second. The band-pass structure can be obtained from the

low-pass design by replacing coils and condensers, respectively, in the

low-pass design by resonant and anti-resonant circuits tuned to the center

of the design band. The coil in each resonant circuit and the condenser in

each anti-resonant circuit are the same as the coil or condenser which is

replaced. The resistances in the original circuit are not changed.

Fig. 19.19

The low-pass to band-pass transformation is relatively easy to apply in

most cases. When the band is extremely narrow, however, the use of the

transformation may be hampered by two practical difficulties of a type

familiar in the analogous problem of building a very narrow band-pass

filter. One such difficulty has to do with the range of element values

necessary in the transformed network and the other with the Q's required

in the individual elements. This may be seen most easily from a considera-

tion of the networks in Figs. 19.18 and 19.19. The first represents a tuned

circuit in the low-pass equivalent structure. We may imagine that the

circuit resonates near the edge of the useful band in the low-pass design

and that the two reactive elements represent reasonable element sizes for

this design region. Parasitic dissipation is allocated for convenience

equally between the inductance and capacity and is represented by the two

resistances in the circuit. The band-pass transform is shown by Fig. 19.19.

The elements L and C remain the same, but elements C and ll are added to

resonate with them at/r, the center of the final band. Thus, from the
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assumption made previously, we must have L/L' = C/C' =J?//o, where

/o is the edge of the useful band in the low-pass design. If/,, is much greater

than/o this relation obviously indicates an extreme disparity in the element
sizes of the network, so that some of the elements are almost certain to be

inconveniently large while others are inconveniently small. We may also

notice that since the resistances in the circuit remain the same the Q's

required in the reactive elements will be larger in the band-pass design in

the proportion fr//o- The difficulty with element sizes can frequently be

overcome, or at least ameliorated, by representing the network branches in

other equivalent forms, but the problem of providing an adequate Q is not so

easily avoided.

10,000 3500

Fio. 19.20

A simple illustration of the low-pass to band-pass transformation is

furnished by a set of preliminary designs for an intermediate power radio

transmitter. The structure was intended to operate on a carrier frequency

of 20 mc and to transmit 12 channels, occupying 50 kc on a single side

band basis. The feedback was applied to suppress interchannel modula-

tion. Thus the circuit is somewhat similar to the transmitter described

previously, with the exceptions that radio frequency rather than envelope

feedback is used, so that it contains no modulator or demodulator, and
that it operates on a somewhat higher power level, which means that

tubes with a lower figure of merit must be used.

A tentative design for the transmitter is shown by Fig. 19.20. Each
coil resonates with the associated capacity reactance at the center of the

band. The source and load impedances, the latter including the parallel

plate resistance of the output tube, are represented by the 10,000 and 3500

ohm resistances at input and output. The feedback circuit is of shunt
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type. Its loss is controlled chiefly by the potentiometer formed by the L

of capacities in the drawing. The additional series resistance is added to

present a reasonably high impedance at the input and it is shunted by the

anti-resonant network to diminish its effect on the asymptotic loop. In

the forward circuit, the interstages are simple tuned circuits. The parallel

resistances are introduced to represent the effects of coil dissipation and also

the plate and grid dissipation of the adjacent tubes. The second and third

tutes are power triodes having relatively large grid-plate capacities. They

are coil neutralized, as the drawing indicates.

Since the tuned circuits are all anti-resonant networks, the low-pass

equivalent is obtained merely by deleting all the coils in the structure.*

This leads to the unfolded loop shown by Fig. 19.21. The computed gain

and phase characteristics for the structure are shown by the solid line

Curves I in Figs. 19.22 and 19.23. The asymptote, as determined graphi-

cally, crosses the zero gain axis at 2 mc and has a slope of 12 db per octave.t

The loop characteristic depends largely upon the grid-plate coupling capaci-

ties in the last two tubes. To illustrate this, the broken lines in the two

figures have been drawn to show the gain and phase characteristics which

would be obtained if the coupling capacities were neglected. It is also

important to recall, from the discussion in the previous chapter, that the

presence of the coupling condensers changes the structure from a minimum

to a non-minimum phase configuration. This is indicated by the dotted

line in Fig. 19.23, which represents the minimum phase characteristic corre-

sponding to the actual gain characteristic shown by Curve I in Fig. 19.22.

The ideal cut-off characteristics are shown by Curves II in Figs. 19.22

and 19.23. Phase and gain margins of 30° and 10 db, respectively, are

shown. It may be noticed that the horizontal step in the gain characteris-

tic is much broader than it would be in a normal design. With the usual

proportions the limiting frequencies of the step would be in the same ratio,

* The elements in the capacity potentiometer introduce no difficulty because the

coil in the output plate circuit is supposed to tune with the total capacity (about

29 nyf) which it faces. This permits the low-pass equivalent in Fig. 19.21 to be a

valid representation of the actual circuit except for very low frequencies (of the order

of 0.1 mc or below), where the impedance of the potentiometer shunt branch in

Fig. 19.21 is so large in comparison with the impedances which follow it that the

potentiometer can no longer be thought of as operating essentially as a voltage divid-

ing circuit. Hence the curves of Figs. 19.22 to 19.24 do not correspond to Fig. 19.21

at the lowest frequencies.

t That is, this is the assumed slope for purposes of computation. The actual high-

frequency characteristic depends largely upon the grid-plate coupling condensers and

eventually reaches a slope of 6 db per octave, whereas the slope would be 18 db per

octave if the coupling condensers were omitted. The effect of this subsequent slope

change is lumped with the excess phase term described later.
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12 : 10, as the adjacent slopes. In accordance with the discussion near the

end of the last chapter, however, the actual step is made nearly half an

octave broader than this to compensate for the excess phase in the rf loop.

The ideal cut-off can be simulated without trouble at frequencies more

than a few hundred kilocycles from the band, but near the edge of the

band the Q and element value limitations in the low-pass to band-pass trans-

formation make it difficult to secure a sufficiently selective characteristic.

0.02 004006 0.1 0.2. 0.4 0.6 1

Fig. 19.24

This is illustrated by Curves II of Figs. 19.24 and 19.25, which represent

the result secured when the original first interstage in Fig. 19.21 is replaced

by the structure shown in Fig. 19.26.-f. It will be seen that the lack of

adequate low-frequency selectivity leads to a feedback in the useful band

which is nearly 20 db less than the amount promised by the theoretical cut-

off, shown by Curves I in the two figures.
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Fig. 19.25

The structure of Fig. 19.26^ is a simple trap circuit design with a trap

circuit resonance near 1 mc to fill in the difference in loss between Curves I

and II of Fig. 19.22 in this general region. Figure 19.265 represents a

slightly modified form of the network having a distribution of dissipation

more suitable for the band-pass equivalent structure. As either structure

stands we could evidently secure a considerably larger feedback in the use-
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Fig. 19.26 Fig. 19.27

ful band without materially affecting the /j,p characteristic at higher fre-

quencies merely by decreasing the zero frequency conductance path
through the network. If we transform the network of Fig. 19.265 to the
band-pass equivalent shown by Fig. 19.27 however, we notice that even

Cm=2S00 G»,=1000

Fig. 19.28

with the present element values the coils in the two anti-resonant circuits

must have Q's of more than 200 at the carrier frequency. If Q's this large

are not available the feedback in the useful band will, of course, be still

further diminished. Curves III of Figs. 19.24 and 19.25, for example, show
the result secured if the maximum obtainable Q is 100.

0.4 0.6 1 7.

Fig. 19.29

In view of these limitations it appeared that adequate feedback could be
obtained more simply by adding a fourth stage* to the existing structure of

* The phase reversal necessary for operation with an even number of stages is

obtained merely by crossing terminals. The amplifier is actually a push-pull circuit,

shown single sided in this discussion as a matter of simplicity.
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Fig. 19.21. This leads to the same general advantages that an increased

number of stages permitted in the transmitter described previously. The

configuration chosen for the new interstage is again of the trap circuit type,

as shown by Fig. 19.28. It leads to the overall loop gain and phase shown

400-

deq

300

ZOO

100

Meqaci-jcles

0.1 0.2 0.4 06 1 2 A 6 10

Fig. 19.30

by Curves I of Figs. 19.29 and 19.30. The Q required in the band-pass

structure is in this case 100. Curves II and III show the results obtained

with Q's respectively one-half and one-quarter as great.

19.6. Lower Cut-Off Characteristicsfor Feedback Amplifiers

The low-pass to band-pass transformation just described is appropriate

for amplifiers in which the ratio of the upper to the lower edge of the useful

band is not very great. When the lower frequency limit for the band is

only a small fraction* of the upper, it is simpler to regard the cut-off charac-

teristic below the useful band as an independent problem. An appropriate

shape for the lower cut-off can evidently be obtained by plotting the upper

cut-off characteristic on a reciprocal frequency scale. Figure 19.31, for

example, shows, on an arithmetic frequency scale, a combination of upper

* Since the band-pass characteristic is always theoretically more efficient than a

combination of low-pass and high-pass characteristics, the dividing line depends upon

the amount of improvement in feedback which is regarded as worthwhile. The

advantage of the band-pass characteristic is easily computed by identifying /q in

equation (18-7) of the preceding chapter with, first, the upper edge of the useful band

and, second, the difference between the upper and lower edges. For example, if the

edges are in the ratio 5 : 1 the use of the band-pass characteristic allows an increase of

about 4 db in available feedback, while if the edges are in the ratio 10 : 1 the improve-

ment is about 2 db. It should be noticed, however, that the various power supply ele-

ments, such as grid leaks, blocking condensers, choke coils, etc., can be used as control-

ling elements in shaping the lower cut-off in the combination characteristic, while the

band-pass characteristic is valid, strictly speaking, only when these elements are made

so large that they do not enter into the characteristic in the cut-off range. This

consideration usually limits the applicability of the band-pass characteristic to much

narrower bands than the above figures might suggest.
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and lower characteristics for an amplifier whose useful band in octaves is

very broad.

If we use a combination characteristic of this type, the asymptote for

the lower cut-off characteristic is furnished by the various elements control-

ling the direct current potentials in the amplifier. The chief of these are

usually choke coils, blocking condensers, and grid-leak combinations in the

interstages, filtering elements in the plate supply circuits, and condenser-

resistance combinations in the cathode leads to provide self-bias on the

tubes. The low-frequency cut-off is not usually so difficult a design prob-

Fig. 19.31

lem as the high-frequency cut-off, since we can obtain as favorable an

asymptote as we need by making the various blocking condensers and

choke coils large enough. For this reason it is not usually necessary to

provide a very efficient cut-off, having a low phase margin and a sharp

corner at the band edge. It should be emphasized, however, that a neces-

sary minimum of design effort in shaping the low-frequency cut-off must

be expended. It is not enough merely to make the power supply elements

very large. For example, if we double all the coils and condensers which

are effective at low frequencies, the original frequency characteristics will

be repeated one octave lower. If the amplifier is unstable on account of the

original elements it will still be unstable. It can be stabilized only by alter-

ing the relative proportions of the low-frequency elements.

An example of a low-frequency cut-off characteristic is furnished by the

low-frequency design of a preliminary version of the amplifier used as the

concluding illustration in this chapter. The lower edge of the useful band

occurs at 60 kc. A sketch of the amplifier to show the elements effective

at low frequencies is given in Fig. 19.32.* The 4200 ohm, 2000 ohm, and

* The value assumed for the impedance of the first interstage corresponds to the

configuration in Fig. 19.57 without the 5657 ;uh coil. In the final low-frequency design

there were a number of changes which made the presence of this coil appropriate.



ILLUSTRATIVE DESIGNS 511

550 ohm resistances are the low frequency values for the impedances of the

two interstage networks and the |3 circuit. The other elements will be

recognized as self-biasing units in the cathodes,t blocking condensers, grid

= 4000 100 ujjf c"" =4000
11-

leaks, and condenser-resistance niters in the plate supply leads. If we

consider each blocking condenser and its associated grid leak as a unit,

all these structures, as it happens, are simple capacity-resistance combina-

tions. Thus they can be specified by their CR products, which fix the

frequency at which the capacity and resistance exhibit impedances of

equal absolute value. A table showing the CR products and the asso-

ciated frequencies for the various units is given below.

Network CR fr

First Cathode 6 X KT6
26.5 kc

Second Cathode 6 X KT6
26.5 kc

Big. Cond.— Grid Leak in first interstage 50 X 10
-6

3.2 kc

in second interstage 100 X 10
-6

1.6 kc

in circuit 5 X 10
-6

32.0 kc

CR filter in first plate cct. 50 X 10"6 3.2 kc

in second plate cct. 50 X 10
-6

3.2 kc

in third plate cct. 125 X KT6
1.3 kc

The principle upon which the design is based can be understood from an

inspection of the table. It consists, broadly speaking, in staggering the

CR products so that the various networks are effective in different parts

t Self-bias on the power tube is provided by a simple resistance, without a shunting

capacity, in order to provide additional local feedback on the tube within the useful

band.
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of the frequency range, and a fairly uniform cut-off rate can be established.

For example, two of the three networks with the largest values offr are

the cathode biasing units, each of which has an/r occurring slightly more

than one octave below the useful band. The two biasing units are of no

-30

6 10

Fig. 19.33

effect at very high frequencies, while at very low frequencies they intro-

duce local feedbacks which depress the gain of each stage by about 1 1 db.

The CR product marks the approximate frequency below which the local

feedback characteristic is fairly well established. Thus with theCR products

as chosen for the biasing units, most of the 22 db total change in gain

which they produce occurs in the first octave and a half, roughly, below

the useful band, and represents the chief constituent of the [ifi char-

acteristic in this region. The effect of the biasing units is shown in more

detail by Curves I of Figs. 19.33 and 19.34.*

* As Fig. 19.33 is drawn, it appears that the local feedback characteristic extends

sufficiently far into the useful band to produce an appreciable rounding of the ju/3

characteristic above 60 kc. In the actual design this was largely compensated for by

the varying interstage and /3 circuit impedances, which had not yet reached the low-

frequency condition indicated in Fig. 19.32. In the absence of such compensation, it

would probably be desirable to choose /,'s another half octave or so lower.
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The third network having a comparatively high fr is the blocking

condenser-grid leak combination associated with the grid of the first tube.

The characteristics of this structure are shown by Curves II in Figs.

19.33 and 19.34. It introduces a 6 db per octave loss slope in the range

below its fr, i.e., at frequencies more than one octave below the useful

band, and comparatively little effect above its fr . Thus it comes into

play as the slope introduced by the biasing units begins to fail. The com-

bination, as shown by Curves III in the two figures, provides a fairly con-

stant slope of about 9 db per octave for several octaves below the use-

ful band.
/

4 6 10

Fig. 19.35

The remaining elements in the loop become effective at much lower

frequencies. The chief contributors are the blocking condenser— grid-

leak combinations associated with the second and third grids. Together

with the similar combination for the first grid, already considered, they

produce a final asymptotic slope of 18 db per octave. The junction with

the final asymptote is, however, slightly retarded by the elevation in loop

gain due to the CR combinations used as plate supply filters in the leads

to the two interstages and the j3 circuit. This produces a slight "step"

in the cut-off. The final loop characteristics, including some slight effects

not considered here and adjustment for the loop gain level in the useful

band, are shown by Fig. 19.35.

In the method of design just described, the slope of the lower cut-off

characteristic is controlled essentially by choosing constituent networks

having a variety of CR products so that they will come into play in dif-

ferent parts of the cut-off interval. This is possible in an amplifier oper-

ating at moderate frequencies where reasonable element sizes are to be

anticipated. When the useful band extends to extremely low frequencies,

on the other hand, the limitations represented by permissible sizes of

blocking condensers and grid leaks require consideration. Evidently

the method of distributing the CR products is likely to fail in this case,
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since the largest product may be expected to correspond to an excessively

large condenser or resistance.

An alternative way of controlling the characteristic at extremely low
frequencies can be obtained if we suppose that the grid leaks in the con-

ventional amplifier may be replaced

by some more elaborate arrangement

of condensers and resistances. The
advantage of using the grid circuit to

shape the characteristic is, of course,

the fact that the impedance level

represented by the usual grid leak is

so great that the capacities required

in the shaping networks are relatively small even at very low frequencies.

A typical arrangement is shown by Fig. 19.36. The resistance R and

condenser C in the drawing represent a conventional interstage impedance

and blocking condenser, but the usual grid leak is replaced by the three-

element network composed of Rq, Ri, and C\.

Fig. 19.36

If we suppose that the d-c grid resistance R + Ri is fixed, the shape

of the characteristic obtained in the low-frequency region depends upon

the ratios Ri/R and C/Ci. These may be specified by the parameters

k and/o//o defined in the figure. In terms of k and the frequency ratio,

a simple calculation shows that the voltage E2 across the grid for a

voltage Ei across R is given by

v (1 + k)/ + if ,

E
*
= tJ

M'o + ifW + Vf'o+M-f
" C }

Sample characteristics corresponding to two special choices of k and

fo/fo are shown by Curves II and III in Fig. 19.37. Curve I, which gives



ILLUSTRATIVE DESIGNS 515

Input

Circuit

First

Inter-

state

T

Second ~R rj¥>
'

Inter- VV
stage

Output

Circuit

18£< Lo.216

\MFD

-1.08
-MFD

J + B

>150

Lvw*-'—WV*—

'

Fig. 19.384

the result for a simple grid leak, is introduced for comparison. It will be

seen from the curves that the networks have roughly the fundamental

property necessary for a cut-off solution, that they permit a predetermined

average cut-off slope and corresponding phase to be maintained over a

considerable region. The degree of approximation can be improved by

staggering the designs in the various grid circuits.

An example of the use of this technique is furnished by the design of a

ZMFD

Bias

Input Circuit

UMFD

25,000"

VOMFD
HI-. •

', 50,000

150

Output Circuit

0.33ATFD

First Interstate Second Interstaqe

Fig. 19.38B



516 NETWORK ANALYSIS Chap. 19

laboratory amplifier intended to give 60 db feedback in the frequency

region from 5 to 25 cycles. A schematic of the amplifier is shown by
Figs. 19.38^/ and 19.385. The principal constituent of the /3 circuit is a

condenser-resistance bridge intended to give a peak of loss at an ad-

-joo

justable frequency in the 5 to 25 cycle range. For design purposes it can

be regarded as a flat high impedance pad. The grid circuit designs are of

the type just described with k = 5 and fo/fo = 40 in each case. These

parameter values correspond to the character-

istic shown by Curve II in Fig. 19.37. The

designs are, however, staggered in frequency,

the reference frequency

/

being increased by a

factor of three as we go from the first to the

second or from the second to the third grid.

The overall low-frequency gain and phase char-

acteristics are shown by Fig. 19.39.* It will be

seen that a cut-off slope of 9 db per octave is

realized with great accuracy down to a fre-

quency of one cycle per minute.

In designing the low-frequency cut-off it was assumed, as Fig. 19.36

indicates, that the impedance in the plate circuit of each interstage is a

rather low resistance. The high-frequency cut-off of the amplifier must

be obtained by adding suitable shaping elements to these resistances. In

the present instance advantage may be taken of the fact that if we re-

place if/fo by / /'if the expression for E2/Ei given by (19-1) can also

be interpreted as the impedance of the structure shown by Fig. 19.40.

* The absolute level of gain depends, of course, upon the tube transconductances and

the loss assumed for the ft circuit. This discussion is omitted here since the /8 circuit

design involves a number of questions of no particular interest for the overall loop

design.

Fig. 19.40
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Thus by suitable adjustments of the unit of impedance and frequency the

lower cut-off design which has already been found provides a ready-made

design for shaping networks which will furnish a precisely symmetrical

upper cut-off characteristic. The remaining elements in the two inter-

stage networks, Fig. 19.38, were determined by this means. The 150 ohm

resistance and associated three element CR structure in the /3 circuit per-

forms the same function for the circuit leading to the first grid. We observe

that the complete m/3 characteristic is obtained without the use of coils,

which would evidently be undesirable in a circuit operating at such low

frequencies.

19.7. Illustrative Design of a Regulating Broad-Band Amplifier

The final example consists of one of the repeaters designed for the co-

axial system.* The useful band of the structure extends from 60 to

2000 kc. Since low-frequency cut-off designs have been described in

the preceding section, only the high-frequency characteristic will be

considered here. The spacing between repeaters is nominally 5 miles,

which corresponds at 2000 kc to a line loss, which the repeater must

overcome, of about 40 db. In order to compensate for irregularities in

repeater spacing and for variations in line attenuation due to temperature,

however, the amplifier is supposed to include a variable /3 circuit control

which will introduce a positive or negative characteristic proportional to

that of a small length of line. The maximum swing is ±1.2 miles of linef

or from about 30 to about 50 db in gain at 2000 kc. Feedback of the

order of 25 to 30 db is desired.

With a useful band as great as the one specified, the problem of securing

adequate feedback must be the controlling consideration in choosing the

general arrangement of the amplifier. It appeared upon investigation

that series feedback would give the most favorable asymptote-! A circuit

of this type was therefore adopted. The general configuration is shown

by Fig. 19.41. Aside from the use of the series feedback circuit, the

asymptote was made as favorable as possible by reducing all parasitic

* See footnote, p. 285. The regulating network in the feedback path of the

amplifier belongs to the general class of structures described in " Variable Equalizers
"

by H. W. Bode, B.S.T.J., April, 1938.

t As a matter of simplicity the complete regulator range over which the amplifier

was supposed to remain stable is given here. The useful range for normal service is

somewhat smaller.

+ The cathode feedback circuit, which is slightly more favorable, was not developed

at the time this amplifier was designed. Comments of a similar sort apply to the

numerical values given for the capacities and transconductances of the tubes in the

circuit.
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capacities to a minimum and by constructing the variable /3 circuit as a
single shunt branch, so that a small series coil would remove it entirely

from the high frequency path.

The physical origins of the various capacities shown in the drawing
should be self-evident, with the possible exception of the capacity across

the circuit, which is due chiefly to the capacity to ground of the trans-

formers. With the indicated transconductances and interstage capacities

the " figure of merit " frequency ft is about 50 mc. The asymptote has

<?„-4000 O_=4000

Fig. 19.41

a slope of 18 db per octave and the " circuit loss " A t at 50 mc is 18 db.

The resulting Am over the useful band is obtained from equation (18-12)

of the preceding chapter as 48 db. It is interesting to notice that the

series feedback circuit used in the amplifier is quite close to the ideal. With
tubes of the given figure of merit, the available feedback could be increased

only 12 db even if we had a theoretically perfect circuit with At
= 0.

The detailed amplifier design begins with the input and output circuits.

These structures, however, are not of great interest here and will be dis-

missed briefly. Broadly speaking, the input and output circuits provide

a varying gain characteristic which compensates (at normal line lengths

and temperatures) for the varying attenuation of the line in the upper part

of the useful band. Supplementary equalization at lower frequencies is

supplied by an additional conventional equalizer inserted in front of the

amplifier.* The general technique of design is the same as that described

in Chapter XVI. For our present purposes the input and output circuit

designs are of interest chiefly for their effect on the overall loop characteris-

* In general, of course, line equalization might also be provided by a variable loss

in the |8 circuit. When the /8 circuit is required to be a regulator of the single branch

type, however, it appears that its normal loss characteristic, for the mean regulator

setting, must be almost constant. The characteristic of the actual /3 circuit is given

later in Fig. 19.50.
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tic through the so-called " transformer potentiometer terms " described in

connection with Fig. 16.31 of that chapter. A plot of the sum of the

potentiometer terms for the two circuits is shown by Fig. 19.42.

db

W-

Megacycles

.Z "7s i 2

Fig. 19.42

We have next to consider the design of the forward circuit and feedback

impedances to secure an appropriate loop characteristic. This problem is

complicated by the fact that the loop characteristic must obviously vary

as we vary the /3 circuit to compensate for different lengths of line. "
p"
The

10

db

8

6

4

2

Megacycles

Fig. 19.43

situation can be examined by plotting the variable characteristic on the

$ scale described in Chapters XVII and XVIII. Thus Fig. 19.43 shows

the required change in loss from the mean to one extreme regulator setting

plotted on an ordinary log frequency scale, while Fig. 19.44 gives the

same characteristic on the $ scale. The average height of the plot on the

* scale is about l\ db. The variable changes in loop transmission intro-
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duced by regulation are consequently equivalent at extreme settings to a

constant change of 1\ db in feedback in either direction from the mean.

Since the asymptote is fixed these changes in effective feedback must
evidently imply corresponding changes in the gain or phase margins, or

both, assigned to the loop cut-off. For design purposes it was assumed

o« 30° 60°

Fig. 19.44

90°

that the gain margin would remain fixed and equal to 15 db for all settings

of the regulator and that changes in effective feedback due to regulator

operation would be taken up by varying the phase margin. Specifically,

a constant feedback of 28^ db in the useful band was assumed for the mean

regulator setting. The variable characteristics for the extreme settings,

then, are equivalent to constant feedbacks of 21 and 36 db, respectively.

Since Am is known, equation (18-9) of the preceding chapter allows the

corresponding phase margins to be determined. They turn out to be

equal to 17°, 35°, and 53°, respectively, for the maximum, average, and
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minimum settings. Detailed cut-off characteristics computed from these

data* are shown by Figs. 19.45 and 19.46.

Since the difference between the successive curves in Figs. 19.45 and
19.46 must be equal to the regulator characteristic this analysis leads to the

complete specification of the regulator loss and phase characteristics at

all frequencies, in spite of the fact that only the loss in the useful band is

specified by the overall amplifier requirements. The loss and phase spec-

ification above the useful band need not be taken very literally since

Fig. 19.46

reasonable departures from constancy of phase margin in the character-
istics corresponding to the intermediate and lowest regulator settings are

tolerable if the characteristic for the maximum setting is well designed, but
they represent a useful general guide in choosing the regulator circuit.

The characteristics actually obtained from the regulator are shown by
solid lines in Figs. 19.47 and 19.48.f The "theoretical" characteristics,

obtained as differences between the overall cut-off characteristics, are
shown by the broken lines.

The details of the regulator design are beyond the scope of this treat-

ment. The structure itself is shown by Fig. 19.49. The reference loss

and phase at the average setting, from which the regulator characteristics

are computed, are shown by Fig. 19.50.J The curves take account of
parasitic capacities, as well as the elements shown explicitly in Fig. 19.49.

* An exact computation for the extreme settings, for which the feedback in the use-

ful band varies with frequency, requires the application of some such formula as equa-
tion (14-33) of Chapter XIV but it is sufficiently accurate to estimate the characteris-

tics from the known loop characteristic for a circuit having an equivalent constant
feedback.

TOnly one characteristic is shown in each figure, since positive and negative

departures from the reference condition are symmetrical.

t The curves represent the gain and phase which would be obtained if the network
"*ere used as an interstage for one of the tubes in the forward circuit. Since the trans-

conductance is 4000 micromhos this is equivalent to choosing 250 ohms as the unit of
impedance.
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The exact behavior of the circuit is, of course, quite complicated. In the

high frequency range, however, it is roughly similar to that of the well

damped anti-resonant circuit shown in Fig. 19.51. The condenser repre-

sents the 26 nnf transformer-to-ground capacity shown in Fig. 19.41,

together with allowances for the shunting effect of the input and output

circuits on the /3 circuit impedance and for the parasitic capacity of the ft

circuit elements themselves. The inductance is, of course, the same as the

leading element in Fig. 19.49, while the 115 ohm resistance represents the

rest of the network. Within rather broad limits the anti-resonant fre-

quency can be placed arbitrarily by varying the inductance. The reason

for setting it at the very high value which is found in the actual circuit

will appear later.

The design is completed by supplying a ix circuit which, in cooperation

with circuits already designed, will provide the requisite overall cut-off

characteristics. In general, a large number of possible designs can be

obtained both because the division of labor between the two interstages

can be changed and because we can change the required forward circuit

characteristic as a whole by varying the /3 circuit anti-resonance in Fig.

19.51. Since some of these combinations may be much simpler than

others, it is worthwhile to survey the situation before a o

detailed design is attempted. One clue is afforded by *—

the relations between excess gain and phase margin 0.44£

rb45
Mjuf

developed for interstages in Chapter XVII and for the

feedback loop as a whole at the end of Chapter XVIII.

Another attack is obtained if we attempt to correlate

the various corners and slopes in the ideal cut-off char- " T~

acteristic with the separate physical parts of the ampli-

fier which may be supposed to produce them.
IG '

The excess gain and phase margin computation is conveniently begun
by the observation that if we begin with the gain characteristics shown
by Figs. 19.42 and 19.50 the required 28j db feedback for the normal
regulator setting is obtained with a nearly constant total interstage gain

of about 35 db throughout the useful band. With the prescribed trans-

conductances and interstage capacities, however, the maximum available

gain from the two interstages over the useful band is 66 db. Thus there

is an available surplus gain of 31 db, or 3.6 nepers. In accordance with

equation (17-18) of Chapter XVII, this means that the average height

of the interstage phase margin plot on the *' scale must be 3.6 radians.

The relations are shown in more detail in Fig. 19.52. Curve I represents

the plot of (w/coo) (180° — BL ) where BL is the phase shift for the ideal

cut-off characteristic at normal setting. Curves II and III are similar

plots for (co/w )5j. and (ai/oi )Bg , where BT and B$ represent the trans-

former phase terms and the circuit phase given by Figs. 19.42 and 19.50,
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respectively. Since with two interstages the limiting phase shift against

which the interstage phase margins are computed is 180°, it is easy to see

that the sum of all three curves represents the interstage phase margin

function which appears in equation (17-18) of Chapter XVII.

noor

The sum of the three curves in Fig. 19.52 has been plotted as the heavy

curve of Fig. 19.53. The broad shoulder extending from about $' = 50°

to <£>' = 90° is relatively easy to interpret. Since $' = sin
-1

coq/w, this

160CT

1200
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<»00
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Fig. 19.53

interval on the $' scale corresponds to a relatively narrow interval just

beyond the useful band on the true frequency scale. We would evidently

expect to secure a phase margin characteristic which is relatively con-

stant in this range, but drops off gradually as we approach lower values
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oi $ , from a well damped interstage of the simple type indicated by Fig.

19.54. We may consequently assume, tentatively, that the first inter-

stage will be of this simple form and will introduce a phase margin con-

tribution of the type indicated roughly by Curve I in Fig. 19.53.* In an

ordinary amplifier it would be worthwhile to redesign the (} circuit in an

attempt to concentrate all the area under the phase margin curve into a

Fio. 19.54 Fig. 19.55

shoulder near the right-hand end of the plot. This would permit both
interstages to be realized by relatively simple structures. In this ampli-

fier, however, the regulation requirement on the /3 circuit permits no
effective design control of its normal characteristics beyond the shifts in-

troduced by varying the anti-resonance in Fig. 19.51. It is consequently

necessary to elaborate the forward circuit design to obtain the required

phase margin at low values of $'.

In the actual design the peak in the phase margin plot near $' = 5°

was provided by inserting the network shown by Fig. 19.55 in the cathode
of the third tube. The 13 /i/if condenser represents the parasitic ca-

pacity from cathode to ground and is not a physical element. The struc-

ture provides local feedback on the third tube which depresses its gain

by 12 db. In other words, it consumes 12 db of the total of 31 db surplus

gain which is to be expended. The local feedback remains almost con-

stant in the useful band and beyond it up to about 20 mc. At higher fre-

quencies, however, it is eliminated by the filterlike action of the anti-

resonant circuit and parallel capacity in Fig. 19.55. This leads to an
increased gain in the third stage with the associated phase shift shown
by Curve II in Fig. 19.53.

* That is, Curve I is roughly a plot, against $', of (o}/ai )(90° — Bi), where Z?i is the

phase characteristic to be expected from an interstage of the type shown by Fig. 19.54.

Similarly, Curve HI is a plot of (a>/co )(90° — B2), where Bi is the phase characteristic

of the interstage in Fig. 19.56, while Curve II is a plot of — (u/o> )Bc> where Bc is the

phase shift introduced into the forward circuit by the cathode network of Fig. 19.55.
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The loss and phase characteristics introduced by the local feedback cir-

cuit might also be obtained very nearly from an interstage trap circuit.

The local feedback solution is preferred because of the additional advan-
tage which it gives in reducing the effects of non-linear distortion in the
output tube. One difficulty connected with its use, however, should be
mentioned. Since the phase shift introduced by the local feedback term

depends upon the transconductance of the last tube,
the circuit may conceivably become unstable if the
gain of this tube fails through age, even though

_,_
the ideal cut-off characteristic for the principal loop

2000 >
T#uf 1S met exactly f°r normal tube gains. In the pres-

ent amplifier this difficulty is avoided by concen-
trating the phase protection obtained from the local

i feedback circuit into the very high frequency range

I? ,„« beyond the loop cut-off. In order to produce this
ifio. 19.56 . , . ....

result, however, it is necessary to limit the local

feedback in the useful band to approximately the 12 db value whicli was
actually assigned to it, since if we begin with a much larger cathode im-
pedance the shunting effect of the parasitic cathode-ground capacity
becomes conspicuous at too low a frequency.

The provision of the peak and shoulder in the phase margin curve leaves

a nearly constant residue remaining. This was provided by the second
interstage, whose structure is shown by Fig. 19.56. Its contribution to

the total phase margin is represented by Curve III in Fig. 19.53. The
physical interstage resistance is only about one-third as large as the capacity

impedance at the top of the band, so that this interstage consumes about
half the total 31 db of surplus gain. This proportioning between the

resistance and capacity is, as it happens, well suited to the solution of the

phase margin problem, but it is also chosen for another purpose. If the ca-

pacity reactance is represented by X, the interstage phase shift is evidently

B --- tan
-1 R/X = tan

-1
uRC. From this we can write

dB

dR 1 + o?R2C2 i^RC+ zkT' (19~2 >

But it is well known that the function (z + 1/z) is approximately sta-

tionary for values of z anywhere in the neighborhood of z = 1. With the

proportions chosen wRC becomes unity at 6 mc, which is at the geo-

metrical center of the cut-off interval stretching from 2 to 15 or 20 mega-
cycles. Thus a small change in R produces a more or less constant change
in phase margin throughout the cut-off interval. Since a small change in

R evidently produces a nearly constant change in gain in the useful band
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also, the structure thus provides a simple means of adjusting the balance

between feedback and phase margin.

As the final step, the tentative configuration assumed for the first inter-

stage was elaborated to produce a better match with the desired feedback

characteristic in and near the useful band. The final configuration for

this interstage is shown by Fig. 19.57. It gives

the contribution to the overall phase margin curve

shown by Curve I in Fig. 19.53, corresponding to

the consumption of about 4 db of surplus gain. The

crosses in Fig. 19.53 show the sum of the three

constituent characteristics in relation to the heavy

solid line, representing the ideal phase margin

characteristic.

This discussion has been conceived primarily in

terms of the phase characteristics of the various net-

works in order to illustratehow the phase margin plot

may be used as an aid in the selection of suitable

configurations. In a practical design, of course, a study of the relation

between the gains of the various components and the overall loop gain

may be equally useful. In this particular circuit we may divide the loop

characteristic roughly into a region of sharp slope just beyond the edge of

Fig. 19.57

the band, a region with nearly constant slope of about 9 to 10 db per

octave extending from about 3 to about 25 megacycles, and the final hori-

zontal step. With the networks as they have been chosen, the initial

sharp slope is contributed principally by the transformer potentiometer

term shown by Fig. 19.42. Since the transformer term is, however, some-

what more selective than it should be, a compensating characteristic is

introduced by peaking the gain of the first interstage slightly above the

useful band- At higher frequencies this interstage contributes a 6 db per
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octave slope to the overall characteristic. The remaining 3 or 4 db per

octave required by the overall characteristic is contributed chiefly by the

second interstage, whose slope is dampened considerably from the usual

6 db per octave by the parallel resistance in the circuit. For example,

the slope of this interstage is exactly 3 db per octave at 6 mc, where the

resistance and the capacity reactance are equal. The final horizontal

step is obtained, roughly, by balancing the interstage slopes against the

increases in loop gain due to the j3 circuit anti-resonance and to the re-

moval of the local feedback on the last tube.

The collected results are shown in Figs. 19.58 to 19.61. The first pair

of figures gives the gain and phase characteristics of the various forward

circuit components plotted on an ordinary log frequency scale. Curves

I, II, and III refer respectively to the first interstage, the local feedback,

and the second interstage. The other figures give the overall loop char-

acteristics for the mean and the two extreme settings of the regulator.

The maximum feedback setting matches the theoretical curves of Figs.

19.45 and 19.46 quite closely. The others are amply stable but they

depart somewhat from the theoretical curves because of the departures of

the regulator characteristics beyond the band illustrated by Figs. 19.47

and 19.48.
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A and B prescribed in different fre-

quency ranges, 328-

331

Absolute level of attenuation, 287

gain, around a feedback

loop, 475, 493

in an interstage network

of four terminals, 431-

440

of two terminals, 408,

415-420

resistance, 287

Absolutely stable amplifier, see Sta-

bility

change from unstable to, 288-290

Active circuit, impedance, 66-71

mesh equations for an, 6-7

nodal equations for an, 13-15

Thevenin's theorem in an, 76-78

element, 246-248

effect of introduction upon

location of zeros, 117

impedances, combinations of, 191—

195

construction of, 170, 185, 189-

191, 246-248

relation of feedback to, 66-71

structures, physical, 134

transfer impedance, representa-

tion, 244-248

transmission characteristic, see

External gain charac-

teristic

Admittances, driving-point, 15, 24

mutual, 11

self-, 11

transfer, 15, 24

zeros and poles of, 24-25

Adpedance, 15

AFFEL, H. A., 499

All-pass phase correcting structures,

236-242, 247

addition of, to a transfer imped-

ance, 239

definition of, 239

design parameters of, 241-242

properties of, 239-242

simple and anti-resonant types of,

237

Alternative cut-off characteristics,

471-476

forms of equalizing structures,

270-272

Amplification, 1, 6-7

representation by equivalent plate

generator, 1

Amplifier, 7, 31-32, 35-37, 45, 48

absolutely stable, 162-164, 288,

453

as a repeater, 499

available feedback in band-pass,

479, 485

conditionally stable, 162-164, 289,

452

design, applications of phase area

law in, 288-291

single loop, see Single loop am-

plifiers

feedback, see Feedback amplifier

also Local feedback

Type of feedback circuit

forward circuit, 53

frequency transformations in de-

sign of, 208, 210-211

gain, 32-33

impedance, 37-38, 73

531
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Amplifier, lower cut-off characteris-

tics for, 509-517
non-feedback, 52
phase and gain margins, 479, 497
regenerative, 53

regulating broad band, 509-529
stage, see Interstage network
with band-pass transmission char-

acteristics, 502-509
a double feedback path, 499-502

Analysis methods, mesh and nodal,

13-17

Analytic conditions on network
characteristics, 278-

280
functions, 27-28

Cauchy's theory of, 137-151
Antenna coupling circuit for radio

transmitter, 360
Anti-resonant networks, see Reso-

nant or anti-resonant

networks
Approximation of actual character-

istics by straight lines,

337-339
Arc-discharge, 186
Arithmetic frequency scale, relation

between phase and
attenuation charac-

teristics on, 318-319
Armstrong frequency modulation

receiver, 490
Asymptote of feedback loop char-

acteristic, see Asymp-
totic characteristic

Asymptotic characteristic, 458-461,

471, 493, 495-496
contributions of tubes and cir-

cuits to, 476-477
crossover frequency,/,, 465
frequency, effective, 484-485
limitation on maximum available

feedback, 461-468
loss of the loop, 495-496
path in feedback circuit, 463-464,

496

Asymptotic slope, 459-460, 474-475,

478, 485, 496, 513, 518
zero gain intercept, 460

Attenuation, 28, 233, 236
characteristic for given phase,

320-322
complementary, 249
integral theorem, 280-283
-phase charts, 337
reduction, 226-236
units, 287

Automatic compensation for phase,

310
Available characteristic, definition,

105
Average dissipation, Q, in coils and

condensers, 219-223

Balancing network, 500
Band width, conservation of, 211—

214,361,363,382,454,
485

Band-pass equivalent, 375, see Com-
bination of low-pass

and high-pass charac-

teristics

dissipation distribution, 507
transmission characteristics,

502-509
BARNES, J. L., 13

BARTLETT, A. C, 268
BIERENS DE HAAN, D., 314
Bilateral elements, 10, 47, 54, 71-73,

78, 134

,8-circuit, 60
Bilinear transformations, 223
BLACK, H. S., 31

BLACKMAN, R. B., 66, 378
BLACKWELL, O. B., 378
Blocking condenser, 404, 492, 510-

511,513
-grid leak combinations, 513

BOCHER, M., 110

BODE, H. W., 208, 326, 374, 376,

392, 451 517
BOGHOSIAN, W. H.', 430, 489
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Boundary values of a function, rela-

tion of values in the

interior to, 147

Branch equations, for a passive cir-

cuit, 1-4

Bridge circuits, 243, 271

-type feedback, 464

network, 56

reference feedback as a bal-

anced, 61, 83-85, 88-

90

Bridged-T equalizer, design for-

mulae, 272-275

Broad-band amplifier, regulating,

see Regulating broad-

band amplifier

BRUNE, O., 171

Brune network, 233, 235, 247, 250,

253, 259

analytic inverse of, 198

to represent lattice branch im-

pedance, 254

Brune's method of developing a

general passive imped-

ance, 171, 182-185,

190

BURROWS, C. R., 482, 489

BUSH, V., 300

Calculus of residues, 144—147

CAMPBELL, G. A., 19, 231, 266,

271

Capacity, interstage, 177

lumped, 1

parasitic, see Parasitic capacity

path at infinite frequency, 177, 459

potentiometer, 401, 459, 495, 505

reciprocal, or stiffness, 2

resistance combinations in cath-

ode leads, 510-513

CARSON, J. R., 19, 222, 300

Cathode, 1, 6, 14

biasing, 510-513

directly heated, 35

feedback circuit, 39-41, 45

type feedback, general, 86, 361

Cathode, type feedback, in coaxial

repeaters, 388

volume performance and ex-

ternal gain relations in,

400

Cauchy integral, 145

Cauchy's theorem, 142, 276, 278, 280

CHAFFEE, J. G., 489

Charge, electrical, 2

law of conservation of, 3

Charts 1-6, characteristics of four-

element interstages,

445-450

I-XIV, imaginary component of

complex function,

346-359

computation methods for semi-

infinite constant slope

characteristics of, 341—

344

illustrative applications of, 344-

345

summary of, 339-341

use of, 372, 377, 380, 395, 423

Choice between mesh and nodal

analysis, 15-17

of coefficients in impedance ex-

pressions, 206-208

Choke coils, 404, 510

Circuit determinant, 48-49

loss, At, 477-480, 496, see Figure

of merit

Circuits, active, 1, 51, 66, 134, 170,

244

amplifying, see Amplifier

bridge-type, 243

feedback, see Feedback amplifier

also Local feedback

Type of feedback circuit

input and output, see Input and

output circuits

ladder or series-shunt type, 243

passive, 1-4, 51

M-, 7, 31-33, 35, 37, 39-40, 45-46

/S-, 31-34, 37-38, 40, 45-46

Circular impedance loci, 223, 382
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Coaxial Hne, 305, 309-312
system, design of repeater, 360,

see Regulating broad-

band amplifier

external gain and volume per-

formance, 388-392
Coefficient, coupling, 5

Combination of active impedances,
191-195

low-pass and high-pass charac-

teristics, 509

Comparison amplifier, 35
Compensation theorem, 80

Complementary equalizer character-

istics, 249-250, 264
impedance characteristics, 199—

200

Complex branch impedance, 223

frequency, 18, 137, 223

driving-force, 18

physical validity of, 28-30

plane, 22-24, 29

response measurement, 29

integration vs real, 138-139

Composite equalizer structures, 250-

260
Computation of local feedback and

sensitivity, 98-99

phase for prescribed attenua-

tion, 337-345

transmission from plate to grid,

91-95

/Fo, 78-79, 88-91

for amplifier with local feed-

back, 95-97

Condenser, see Capacity
Conditional and unconditional sta-

bility, 162-164

Conductance reduction, see Resist-

ance reduction

Conformal variation of network
characteristic, 224

Conjugacy, 38, 106, 115, 172

Conservation of band width, 211-

214, 361, 363, 382,

454, 485

Constant impedance devices, 224
-k high-pass or low-pass filter, 207
loop gain area condition, 456
resistance equalizers, 283-285

filters, 255

image impedance, 229

representation of a general

transfer impedance,
227-235

Constituents of general impedances,
246-248

Construction of a general transfer

impedance, 230-235
Contour integrals in limiting cases,

139-141

integration, formulae for network
functions, 277-280,

291-302, 305-307
general, 137-169

in the complex plane, 138-139
of the logarithmic derivative,

147-151

path, 143, 278-280, 296
relation between integral

and, 141-144
relations in input and output

network design, 377,
380-381

interstage network design,

377
two theorems from function

theory, 167-169

Conversion circuit, FM to AM, 490
CR product, 511-513

Critical frequency, 218

displacement by parasitic dissi-

pation, 244
point, 154, 158, 452, 475-476

Current, 22

branch, 3

condition, nodal, 2, 4
equilibrium, 1, 11

generator, 12, 14, 189

in-phase and quadrature compo-
nents, 19

instantaneous, 8
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Current, mesh, 3, 6

nodal, 7

Cut-off characteristics, alternative,

471-476

loop, see Loop

Q and element value limitations

on, 507

variable, see Regulating broad-

band amplifier

rate, 471

DARLINGTON, S., 171, 203, 217,

229, 370

Decade, definition, 315

Decibels, 33

DECINO, A., 489

Decomposition of general transfer

characteristic, 251

Degeneration in a general feedback'

circuit, 285-286

Delay distortion, 310

Design formulae for bridged-T

equalizers, 272-275

methods for feedback structures,

104-105, see Feedback

amplifier

Determinants, 24

DICKSON, L. E., 110

DIETZOLD, R. L., 489

Differential mesh equations, 109-

110

Direct transmission, 53, 56-57, 60-

61,82
Discontinuity in one component of

or its derivative, 339

Dissipation, energy function, 127,

171

in filter design, 217

Taylor's series expansion, 219

parasitic, 216

formulae for effects of, 220-222

in distortionless media, 222-223

Distortion generator, 79-80

reduction of effects of, by feed-

back, 45, 79-80

Distortionless media, 222

Double feedback path, 499-502

Driving-point functions, 226-228,

231-232, 236, 263

constituents of general, 246-248

immittance, 196, 226, 244-248

functions, representation of gen-

eral, 188-195

impedance, 8-9, 223, 244-248

as a function of a single element,

9-10

physical representation of, 170-

195

Duality between impedance and ad-

mittance analysis, 13,

196, 227

Dynatron, 186

Effective asymptotic frequency,

484-485

band width of feedback amplifier,

453-t58, 470-471

Effects of parasitic dissipation, 216-

222

ELECTRICAL ENGINEERING
STAFF of M.I.T., 31

Element values, range of, 503

Elementary equalizer structures,

251-253

theory of feedback circuits, 31-

35

Energy functions in a passive net-

work, 125-128

dissipative, 127

positive definite, 128, 134

relation to impedance and

power to, 127-132

to stability, 132-134

stored, 127

Envelope feedback for radio fre-

quency transmitter,

479-480, 493-498

Equalizer, 83, 238-239, 245, 518

design, 249-275

alternative forms of, 270-272

bridged-T, 271-275

parameters, 265-266
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Equalizer in jS-circuit, 492-493, 518
the line, 391, 518
with parasitic capacity, 283-285

Equilibrium, current, 11

voltage, 10

Equivalent low-pass amplifier, 210-

211,288,298,469
plate generator voltage, 1, 7

T-network, 229, 459
it for four-terminal interstage, 432

Even and odd symmetry, 106, 120
EVERITT, W. L., 1

Excess gain and phase margin com-
putation and alloca-

tion, 523-526
phase in feedback loop, 480

causes of, 481-484

compensation for, 484, 486
frequency,fp , 484
margins, 485

maximum available feedback

with, 484-485
Exponential representation of physi-

cal sinusoids, 19-22

External gain, 35, 86, 290
characteristic, 45, 389-392, 401

definition, 387
requirement, 463
voltage, 389
with feedback, 80-81, 86-87

Extraction of poles of driving-point

impedance, 175-176

Feedback, 31-43, see Return dif-

ference

amplifier, 31, 156

backward circuit, see /3-circuit

characteristic, active admit-

tance, 386
external gain, 387
loop transmission, 44-47, 386,

389
volume performance, 387, 389

design, 305
single loop, see Single loop

amplifiers

Feedback amplifier, forward or /x-cir-

cui t, seeForward circui t

gain, 245-246

input and output circuits, 56
mathematical definition, 44
reduction factor, 44, 46-47
representation of negative

structure by, 246
transconductance of tubes in,

156-162
circuits, elementary theory of,

31-35
general theorems for, 66-102
ideal, 60-61

regeneration and degeneration

in general, 285-286
types of, see Type of feedback

circuit

effect of, on input and output
impedances of ampli-

fiers, 73-75
envelope or voice-frequency, 479-

480, 493-498, 504
external gain with, 80-81, 86-87
factor, 32
for bilateral elements, 71-73
two elements, 75-76

impedance, 67-68, 387, 389, 519
in band, 457-458, 474

limiting circuit, 456
individual, 49

loop asymptote, 458-459
capacity potentiometer, 459
characteristic, see Loop cut-off

characteristic

excess phase, 480
principal and subsidiary, 158,

489
maximum available, see Maxi-

mum available feed-

back
paths, 45, 60-61

radio frequency, 584
reduction of distortion by, 79-80
reference, as a balanced bridge,

83-84
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Feedback, relation to stability, 44

residual, 89

Figure of merit, 457, 477, 485, 518

frequency, 477-^80, 496

Filter, see Wave filter

Final gain characteristic, 33-34

Finite line segments in attenua-

tion-phase computa-
tions, 338

Flat loop gain, in useful band, 455-

456, 486

advantage at edge of band
of, 455

Formulae for networks of lumped
electrical elements ex-

tended to other sys-

tems, 298-301

physical network characteris-

tics at real frequen-

cies, 291-302

involving A and B at finite points,

296-298

coefficients of higher order

terms in power series,

291-293

integral of A and B over finite

ranges, 296-298

products of functions, 293-294

with reversed symmetry,
295-296

tabulation of, 301-302
Forward circuit, 44—45, 55, see In-

terstage network
design, 523

gain, 45, 490, 492, 499, 501

impedance, 519

FOSTER, R. M., 10, 177, 198, 271

Four-terminal interstage network,

427-431

equivalent circuits, 431-433,

440,444
filter types of, 407, 428-431

gain, general limitations on,

435-440
of maximum constant gain,

440-444

Four-terminal interstage network, of

symmetrical config-

uration, 438

positive and negative resist-

ance integral relations

in, 434

relation to two-terminal in-

terstage, 440, 442
separation of plate and grid

capacities, 428

with ideal transformers, 429

restricted phase shift, 433-

435

network, 31, 228, 236, see

Equalizer

parameters, 201

representation by simple struc-

tures in tandem, 201

Fractionated gain, 81, 87, 386-387

Free oscillations, 107

Frequency, asymptotic crossover,

465

complex, 23, 28-30

plane, 24

definition, 22

effective asymptotic, 484
figure of merit, 477

horizontal step, 465-467

ideal cut-off, 455
modulation receiver, 489—493

negative, 24

real, 23

transformations, 196, 208-210, 218

for dissipation, 214—216

parasitic, 216-222

filters, 210-211,214
networks of two kinds of ele-

ments, 214-215

in amplifier design, 210-21

1

transit time, 484
FRY, T. C, 19

Gain, 52-53, see Loop cut-off char-

acteristic

area redistribution, 407
before feedback, 81-82
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Gain characteristics, 498 ff

of simple interstages, 426-427

external, with feedback, 32-33,

80-82, 87

fractionated, 81

in interstage, 403-440

local feedback circuit, 284

^-circuit, 283-284

margin, 453, 466-467, 479, 492,

495-496, 505, 523-529

reduction rate, 454
with Wa reference, 88-97

GARDNER, M. F., 13

Generator, current, 12, 14

equivalent cathode, 6
plate, 1, 6-7, 15

voltage, 2, 5

equivalent plate, 6-7

with zero or infinite internal im-

pedance, 12

GEWERTZ, C. M., 229, 437
GOURSAT-HEDRICK, 137, 300
Graphical computation of relations

between real and im-

aginary components of

network functions,

337-345
Grid, 1, 6, 13

Grid-cathode impedance, 6-7, 284,

457, see Parasitic ca-

pacity

Grid-leak combinations, 510-511,

514-516.

Grid-plate coupling capacities, 7, 42,

46, 95, 505

GUILLEMIN, E. A., 1, 13, 83, 197,

231, 326, 373

HEAVISIDE, O., 19

High frequency path, see Asymp-
totic characteristic

Horizontal step in loop cut-off char-

acteristic, 471, 505,

513

for excess phase, 484-485, 507

ideal phase, 465

Horizontal step with gain and phase
margins, 468

Hunting, 43

Hybrid coil circuits, 464
feedback, high side, 464

low side, 464, 499

Ideal flat gain amplifier, 244-245
non-dissipative transmission line,

222
transformer, 25, 230-233

for phase reversal, 456
in input and output circuits,

363

interstage circuits, 429, 432
transmission characteristics, 222

Image parameters, 229
Imaginary component charts, see

Charts I-XIV
Immittance, 15, see Driving-point

immittance
also Transfer impedance

Impedance, 8-9

active, 66-71

bilateral, 9
coefficient, general, 24...

complex, 22-24

self- and transfer, 22
coupling, 4

driving-point, see Driving-point

impedance
energy relations at real frequen-

cies, 128-131

expressions, choice of coefficients

in, 206-208

general, partial fraction expan-

sion of a, 200-203

generator, 7

grid, 7

input, of an ordinary feedback

amplifier, 66

level, 388

measurements to determine feed-

back, 75

mutual or coupling, 4

between two meshes, 11
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Impedance of C for the given band

width, 363, 372

passive, 51, 56

reconstructionofa, from aknowl-

edge of either com-

ponent, 203

with addition of active ele-

ments, 66

self-, of a mesh, 4

transfer, see Transfer impedance

transimpedance or mutual, of a

tube, 6-7

values at infinite frequency, 298

with feedback, 66-69

zeros and poles of, 24—25

Index of stability, 158

Indicial admittance, 299-300

Inductance, 5, 13

coupling, 3

distributed, 1

lumped, 1

mutual, 3

reciprocal, 13

Input and output amplifier imped-

ances with feedback,

73-75

circuit design, 372-378, 383-

388, 392-402

applications of general

theorems to, 360-402

impedance match with

filter, ladder structure,

or resistance-react-

ance combination,

373-376

theorems, 368-371

Input and output circuits, 360-402,

462-463, 469, 486

contribution of, to final

gain, 387

equivalent ideal trans-

former for, 363

external gain character-

istic of, 387

filters as ideal designs for,

369

Input and output circuits, for series

feedback amplifier,

392-399

illustrative reflection coeffi-

cient design of,378-383

number of elements in the

design of, 370

reconstruction of the im-

aginary component as

an aid to the design of,

372-378

reflection coefficient theo-

rem for, 364

terminated in capacity,

361-363

and resistance, 363—368

volume performance in,

387, 389

with varying gain charac-

teristic, 518

or output transformer, 360-362,

463

Instability, see Stability

Integration in the complex plane,

138 ff

around a circle, 141

square, 143

of zr\ 140

z», 141

over very small or large paths,

139-140

Interstage capacities, 213, 419, 436,

462, 495, 518

circuit, see Interstage network

gain, 458, 498

impedance, 32, 47, 511

network, 48, 230, 469, 486, see

Four-terminal inter-

stage network

also Two-terminal interstage

network
design, application of general

theorems to, 403-444

technique, 377

in a non-feedback video ampli-

fier, 305
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Interstage phase, 488
Introduction of surplus factors, 258-

260

Inverse network, definition, 196

analytic, 198

for active impedance, 199

Wheatstone bridge, 197

structural, 197-198

relationship, 231, 233, 241

structures, 13, see Inverse net-

work
Iterative parameters, 229

JOHNSON, K. S., 122

KENDALL, B. W., 499

KNOPP, K., 441

KREER, J. G., 151, 489

Kva rating, 182-185, 382

Ladder circuits, 243, 326

Lattice network, all-pass, 237

construction of branch imped-

ances in, 231-233

conversion to bridged-T, 444

equalizer circuits, 270-271

bridged-T equivalent of, 271

equivalents, 266-270

filters, 326

for four-terminal interstages,

440

interchange of branches in, 237

representation of transfer im-

pedance by, 230-235

symmetrical, 231-233

with ideal transformer, 231

Leakage inductance of transformer,

374-375, 464

hybrid coils, 500

LEE, Y. W., 242, 303

Linear phase shift, in useful range,

310

systems, in general, 322-327

with prescribed discrimina-

tion, 331-334

vestigial side-band, 333

Liouville's theorem, 200
LLEWELLYN, F. B., 158

Local feedback, 41-42
cathode circuit, 451

computation, 95-99

parasitic capacity, 283-285, 291,

451

paths, 43, 482, 512
properties, 99-102

Logarithmic derivative, integral of,

147

frequency scale, 287, 338, 344
Loop characteristic, see Loop cut-

off characteristics

closed, 3

cut-off characteristics, alternative

high frequency, 471—

476

asymptotic, 458-464

basic, 410
contribution of tubes and cir-

cuits to, 476-477

corrected vs uncorrected, 468-

471

cut-off interval in, 453

excess phase compensation in,

480-486

frequency ratios for ideal phase
corresponding to, 465,

468, 484
general design procedure for

simulating, 486-488
horizontal step, 465
ideal, 454-458, 470-471, 475,

491-492, 505, 507

margins for, 453

variable, 456

with maximum obtainable feed-

back, 464-468
multiple j8 paths, 452

dimensions, 481

gain, 49

phase characteristic, see Loop cut-

off characteristic

transmission, 45-49, 495

characteristic, 386, 389
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Loop transmission characteristic,

gain and phase shift

components, 401 , 498 ff

Loss and phase reduction in four-ter-

minal networks, 236-

239

Lower cut-off characteristic, for

broad-band amplifier,

509-517

adjustment of low frequency

elements for, 510-517

reciprocal frequency trans-

formations for, 509

Low-pass equivalent amplifier, 503,

505

filter of constant-^ type, 411, 424,

428

w-derived type, 412, 429

to band-pass transformation, 418

type ofamplifier, 453-454, 489-502

Maxima and minima of analytic

functions, 169, 224,

232

Maximum available feedback, 464-

468, 471, 475, 485,

495^96
reduction for circuit loss,

476-479

for excess phase, 484-485

gain and phase margins,

467-468, 495^97
inadequate low frequency

selectivity, 507

small number of tubes,

478-480, 496

phase shift below cut-off, 288-289

power, 364-365

rate of decrease of mj3, 289

MEAD, S. P., 241

Mesh, 53

analysis, 1, 15-17

with reference to complete am-

plifier, 44

equations, 1, 8, 10, 31, 44, 48

fpr a passive circuit, 4-5

Mesh equations for an active circuit,

6-7

steady-state solution of, 7-8

system, multi-, 20, 22

Mid-series image impedance of

constant-^ type filter,

326-327, 373

of w-derived type filter, 373

Mid-shunt terminated low-pass con-

stant-/^ type filter, 326

Minimum attenuation structure,

236, 247

conductance network, 172, 185

loss structure, 236, 247

transfer function, 261, 273

phase condition, 117, 301, 365

shift networks, 230, 238, 242-

244,247,305,309,322,

505

definition, 121, 242

of bridged-T type, 243,

273-274

ladder type with induc-

tive coupling, 243

lattice type, 243

unilateral vacuum tubes

with ladder inter-

stages, 243

transfer functions, 249, 251,

261, 263, 274

reactance network, 184, 247, 249,

377, 397, 424

definition, 175

driving-point impedance, 123

filter characteristic, 374

resistance network, 183, 185,

247

definition, 172

susceptance network, 184

definition, 175

driving-point impedance, 123

Minors, symmetrical and unsym-
metrical, 113

Modulation distortion, reduction by
feedback, 79-80, 390,

494, 504
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Modulator, 43, 490, 493-495

Multiple loop feedback amplifiers,

41-43, 45, 49, 56, 83 ff

illustrative analysis of, 95-102

stability criteria for, 157-162

Multiplex radio transmitter, 493-498

Multi-stage /^-circuit gain alloca-

tion, 420
Mutual impedance of a vacuum

tube, 6-7

inductance, 185

Negative elements, 106

envelope delay, 245

impedance devices, 134

due to positive inverse termina-

tion, 188

line, 245

loss, 244, 288, 298

phase correcting section, 245

resistances, 185-188, 244-245, 248

Network characteristics, variations

of, produced by
changes in a single

element, 223-225

functions, definition of, 105

admissible, 123-125

conjugacy conditions for, 106

even and odd symmetry of com-
ponents of, 106

physically realizable, 108

real and imaginary components
of, see Relations be-

tween

requirements of, for stable net-

works, 120-123

parameters, 227-230

Networks, see Circuits

complementary, 199-200

equivalent to the lattice, 266-270

inverse, 196-199

of pure reactances, 177-182

with any two kinds of elements,

214

equal phase shifts, 263-264

Nodal analysis, 7, 24

Nodal analysis, mesh and, 15-17

of interstage, 403-404
with reference to complete am-

plifier, 44
equations, 1, 31, 44, 48

for an active circuit, 13-15

a passive circuit, 10-13

Node, 1, 53

ground, 12

Noise generator, extraneous, 34, 79-

80, 491

Non-feedback amplifier, 34, 44, 361

Non-linear distortion, 33

in ^-circuit, 34

reduction, 42, 79-80
Non-minimum phase or reactance

networks, 482, 505

advantage of, 277
NORTON, E. L., 378, 408

Number of stages, choice of, 497, see

Optimum number of

stages

zeros and poles of a function

within a contour, 149-

151

NYQUIST, H., 151, 241

Nyquist diagram method of deter-

mining stability, 138,

154-158, 174, 242

plot of T, 193-195, 288-290, 475-

476, 485

Nyquist's criterion for stability, 137,

276, 278

extensions of, 164

for driving-point and transfer

immittances, 165-167

for single and multiple loop

cases, 151-162

OCH, H. G., 489

Open-circuit stable networks, 19,

189-191,199,203,206,

227, 279

Optimum number of stages in

a feedback amplifier,

478-480, 493
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Optimum effect of taking a fraction,

X, of, 478, 496

rule of thumb for, 479

Optional phase characteristics, 239,

243

Orthogonality of real and imaginary

components of net-

work functions, 296

Over-all feedback loop design char-

acteristics, basic, 410

loop cut-off characteristic, see

Loop cut-off charac-

teristics

low-frequency gain and phase

characteristics, 516

phase characteristic of complete

transmission system,

309-312

ju/3 characteristic, 502

Parallel combination of fa and /p,

484-485

Parasitic capacity, grid-cathode, 45-

46

grid-plate, 42, 46

in equalizers, 283-285

input and output circuits,

365,371-374,377,388,

390,400
interstages, 404, 406, 411—

415, 429, 431, 464

limiting feedback loop, 290

local feedback circuits, 283-

285

plate-cathode, 45

dissipation, 216-222, 369, 371,

377, 503

displacement of critical fre-

quencies by, 244

formulae for effects of, 220

in distortionless media, 222-223

relation to selectivity, 400

elements, 213, 360-361, 365, 369,

371-373

at high frequencies, 454, 469-

472, 486

Parasitic elements, conservation of

band width principle

in relation to, 21 1-214

impedance, grid-cathode, 56

plate-cathode, 56

Partial fraction expansion of dissi-

pative passive imped-

ance, 200-203

product expansion of a general

transfer impedance,

250-254

an illustrative transfer func-

tion, 254-258

Passive circuits, branch equations

for, 1-4

mesh equations for, 4-5

nodal equations for, 10-13

driving-point impedance function,

minimum resistance or con-

ductance, types of, 172

reactance or susceptance,

types of, 123, 175

physical representation of,

170-185

reduction of reactance or

susceptance of, 173-

177

resistance or conduct-

ance of, 170-173

elements, 7

ladder network, 243

network functions, see Physically

realizable network
functions

parameters, 227-230

transfer function, loss and phase

reduction of, 236-238

minimum phase shift, 242-244

physical representation of,

226-244

transmission characteristic, 387,

see Volume perform-

ance

Path of integration, relation be-

tween integral and,

141-144
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PERCIVAL, W. S., 408, 428
PERKINS, E. H., 489
PETERSON, E., 151

Phase area, 287, 401

law in amplifier design, 287-

291, 420
spread over broad region, 402

characteristic, as related to atten-

uation slope, 313
attenuation characteristic for a

given, 320-322
for a prescribed attenuation

characteristic, 305-
309, 314-318

of constant slope, 315

semi-infinite constant slope,

316
on an arithmetic frequency

scale, 318-319
with a discontinuity, 315

characteristics, 498 ff

loss and, prescribed in different

frequency ranges, 328-

331

the relation between, 312-

314
of semi-infinite slopes and finite

line segments, 338
optional, 239

control of interstage, relation of

amount of final gain

to, 419
correctors, 239, 264-265, 294

negative, 245

displacement for minimum phase

shift transfer imped-
ance, 242

distortion in selective systems,

305, 317-318
equalization, 305, 317-318, 322

of a broad band system, 309—

312
integral, 286-288, 419-420, 472

margin, 453-457, 464-465, 475,

479, 495-496

plot as an aid to design, 524-527

Phase reduction, 226, 236
reversal, 7, 32, 48, 186, 508
shift, 7, 22, 28, 32, 39-40, 48, 79,

249, 474
compensation for, 479-480
minimum, see Minimum phase

condition

proportional to rate of change
of gain, 454

shifts, networks with equal, 263-

264

sign of, 409

systems, linear, 322-327
with prescribed discrimina-

tion, 331-334
Physical elements, 105

network characteristics at real

frequencies, general

restrictions on, 276-

302, see Contour inte-

gration formulae

realizability, see Physically real-

izable network func-

tions

design methods and the prob-

lem of, 103-105

representation of active trans-

fer impedances, 244-

246

driving-point impedances, 170-

195

by Brune networks, 182-

185

general driving-point functions,

188-191, 246-248

transfer impedance functions,

226-248

by lattices, 230-235, 251-

253

sinusoid, 8

exponential representation of,

19-22

transformer representation, 374—

375

validity of complex frequencies,

28-30
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Physically realizable network func-

tions, 103-136, see

Physical representa-

tion

definition of, 108

design methods for, 103-105

energy and impedance relations

in, 125-131

expressions exemplifying, 123—

125

requirements for, 106—108, 120—

123, 132-136

on driving-point functions, 121,

188-191

zeros of the determinants for, 109-

120

PIERPONT, J., 137

Plate, 1, 6, 14

impedance, 6

resistance, 16

supply circuits, 510-511

Plate-cathode admittance, 284

Plate-grid transmission, computa-

tion of, 91-95

Poles, 144-149, 152, 172-174, 188-

189, 194-195, 232,

236-239, 249, 255,

260, 262, 279, 296,

300, 306, 332, 365,

374, 409

at infinity, 177, 183

complex, 250, 252

physical representation of, 202-

203

of capacity-resistance and induct-

ance - resistance net-

works, 216

relation of, to minimum phase

condition, 236—238

representation of, by partial frac-

tions, 200
single real, 251-252

Positive definite, energy functions,

134

quadratic forms, 128

elements, 134

Positive real function, 171, 190

p-plane, 24

Pre-equalization or /3-circuit equal-

ization in amplifier de-

sign, 230

Principal value of an integral, 306,

332,409

Principle of conservation of band

width, 211-214

duality, 13

reciprocity, 6, 73, 83-84, 229,

389

superposition, 20

Pure reactance networks, 177-

180

Q in band-pass structures, 508-509

damped tuned circuits, 469

low-pass equivalent coils and

condensers, 503

resonant and anti-resonant cir-

cuits, 503

of transformer leakage inductance,

401

relation of reflection coefficient to,

367-368

transmission characteristic to,

368

Radio transmitters with feedback,

illustrative designs for,

493^98, 504-509

Rate of cut-off, 311

Rational functions, 25

specifications of, by zeros and

poles, 105

Reactance integral, 286-288

pure, properties of networks of,

177-182

reduction of passive impedances,

173-177, 226, 236

in interstage networks, 176-

177

residual network after, 176

slope, 181

Reactance-resistance ratio, Q, see Q
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Real and imaginary components
of network functions,

see Relations between
graphical computation of,

337-345

characteristics approximated by
straight lines, 337

elements, 106

frequencies, 131, 137
Reciprocal frequency plot for lower

cut-off characteristic,

509
Reciprocity, 1, 6, 14

Reconstruction of impedances, from
a knowledge of either

component, 203-205,
261-263

Reduction factor, 44
in effect of tube variations, 33,

46-47
of distortion by feedback, 34,

79-80

Reduction-in-gain integral, 487
distribution of area in, 488

Reference condition of the circuit,

simplified computa-
tion of, 88-91

plate-grid transmission for, 91-

92

feedback as a balanced bridge,

83-84

return difference for any, 49
value of an element, 60-65

a tube, 78-79
Reflection coefficient, 37, 73, 75,

360, 364-367
constant, in prescribed range,

367
formula, 364
illustrative design, 378-383
relation of, to Q of terminating

impedance, 367-368
crosstalk, 499

Regeneration and degeneration in a

general feedback cir-

cuit, 285-286

Regenerative amplifiers, 53
Regulating broad-band amplifier,

509-529
high frequency characteristic for,

517-529
lower cut-off characteristic for,

509-517, see Variable
cut-off characteristic

Regulator circuits for speed, voltage
or frequency control,43

to compensate for temperature
and repeater spacing
irregulari ties, 5 1 8-5 1 9,
523

Relations between real and imagi-
nary components of

network functions,

303-336
applications of formulae for, 304-

305
graphical computation of, 337-345
tabulation of, 335-336

Relative importance of tubes and
circuit in limiting feed-

back, 476-477
sensitivity, 62-63, 66, 73

in multiple loop circuits, 83
ratio of return difference to,

84-86

Representation of impedance func-

tions, see Physical rep-

resentation

Residual attenuation distortion with
linear minimum phase
shift characteristic,

322-327
Residue of a function at a pole, 145.

296, 305
Resistance and reactance, relation

between, 204
for minimum resistance and

reactance networks,
205-206

efficiency, definition, 376
reduction for transition region,

377
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Resistance integral condition, 362,

394-396, 431-435

for four-terminal interstage

gain, 435-436, 438, 440

theorem, 280-283

minimum, 172

negative, 185-188

reduction of passive impedances,

170-173, 226, 236

extension to active impedances,

189

for plate or grid-leak-conduct-

ance in interstage de-

sign, 173

theorem, 172

terminating, 227

Resonant and anti-resonant net-

works, 174, 178, 183,

495

Q and element value limitations

in, 503

circuit, the single, 18-19

Return difference and impedance,

68-69

measurements, 75

sensitivity, 47-48, 54-60

relative, 84-86

definition, 47-49

for bilateral elements, 50-52, 71

open- or short-circuited ele-

ments, 67, 69

reference k, 49-50, 66, 186

two elements, 75—78

zero reference, 50, 66, 186

plot, 151-153

loss in reflection coefficient theory,

365-367

ratio, 47-48, 65, 186

definition, 48^19

for bilateral elements, 50, 71

reference value k, 51, 95

zero reference, 48

plot, 154-156, 160-163, 476

voltage, 48

and tube variations, 46-47

difference, see Return difference

" Returned " voltage, 51

Riemann surface, 297

Roots of A, and A°, 109-113, 134,

152, 157, 164

SCOTT, R. F. and MATTHEWS,
G. B., 54

Screen-grid type tube, 1,16, 361, 384

Self-admittance of a node, 11

biasing units in a cathode, 510-

513

immittance, 48

impedance, 11, 48

Semicircular integration path, 143-

144, 365-367

Semi-infinite constant slope charac-

teristic, 338, 341-344

Sensitivity, 47-48, 52-60, 63, 71,

84-86

definition, 47

general formula for, 53-54

relation of, to return difference,

54-60

relative, see Relative sensitivity

Series feedback amplifier, 86, 463,

485-486, 517-529

impedance of, 73

in coaxial repeaters, 361, 388

SHAW, R. C, 485

SHEA, T. E., 1, 78, 80, 83

Short-circuit stable networks, 19,

189-191,203,206,227,

279

Shot effect, 35

Shunt feedback amplifier, 86, 459,

462

impedance of, 73

Signal-to-noise ratio, 34, 384, 386-

387, 390, 393, 490

relationofmodulationand signal

level to, 390

volume performance and signal

level to, 391

Simulation of resistance character-

istic by ladder line, 376

Singing, see Stability
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Single loop amplifiers, definition of,

451

absolutely stable, 288, 451-
487, 489, see Loop cut-

off characteristics

illustrative feedback designs

for, 489-529
Singularities, 27-28, 144, 147, 152

at infinity, 301
branch point, 279, 300-301
essential, 300
logarithmic, 28, 278-279, 300

Six-terminal network, 35
Sources, current and voltage, 13

energizing, 10, 190
Stability, 44, 49, 154, 226, 245-246,

486
and physical realizability, 103-136

the roots of A, 109-111
correction of loop characteristics

to produce, 470
effect of changes in tube gain on,

453

excess phase on, 386
index of, 158

limitations on network functions

resulting from require-

ments for, 103-136
limiting gain and phase margin

for, 453
of passive networks, 132-134
relation of, to singing, 107

steady-state characteristics,

109-110

transients, 107
zero impedance or return dif-

ference, 69
requirements on the roots of A,

109-110, 137
derived from the energy func-

tions, 132-134
type of, absolute or unconditional,

162-164, 288, 453
conditional or Nyquist, 162-

164, 289, 452
open- or short-circuit, 189

Stable amplifier circuits, 419, 475,
see Stability

Stage gain and phase, 403
Stages ofan amplifier, increase in the

number of, 496, see

Optimum number of
Staggered grid circuit designs, 515
STARR, A. T., 271
Steady-state solution for the mesh

equations, 7, 18

characteristics, 300
relation of stability to, 109-110

Step-type cut-off, 465, 476, see

Horizontal step in loop

cut-off characteristics
Stiffness, 5

Stored energy functions T and V,
127, 171, 216

Straight-line approximation method,
337-339

STRIEBY, M. E., 285, 309
Subsidiary feedback path, 158, 489
Superposition, principle of, 20

theorem, 1

Surplus factors in equalizer expan-
sions, 258-260

Susceptance reduction, 173-177, 234,
see Reactance reduc-.

tion

Symmetrical interstage networks,
438-440

lattice network, see Lattice net-

work
minors, 113

roots of, 116

upper cut-off characteristic, 517
Synthesis vs analysis of networks

for feedback ampli-
fiers, 103

T and x networks, 268-269
Tandem configurations, 229, 237,

251

Television transmission, 309
TERMAN, F. E., 1, 31-32, 78, 80,

83, 326, 373
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Thermal agitation, 35

Thevenin's theorem, 11, 387-389

generalized, 78, 80

in active circuits, 76—78

TOWNSEND, E. J., 137

r-piot, 154-156, 160-163, 476

Transconductance, 14, 47-48, 156,

186, 385, 387, 403,

451, 457, 459, 477,

483, 495, 518

product, 451

Transfer constant, 230-233

impedance, active, 244—246

all-pass, 239-242

as a function of a single element,

9-10, 223

passive network parameter,

227-230

choice of parameters in, 265-266

complementary characteristic

for a general, 249

constituents of a general, 246-

248, 252-253, 260

construction of a general, 230-

233

driving-point and, 8-9, 24

in terms of external impedance

measurements, 266-

268, 432

loss and phase reduction of,

236-238

minimum phase shift, 238, 242-

244

partial product expansion cf a,

250-258

reconstruction of a, from a

knowledge of either

component, 261-263

representation by lattices, 258-

259

surplus factors in, 258—260

Transformations, frequency, see Fre-

quency transforma-

tions

from low-pass to band-pass inter-

stages, 418

Transformer characteristic, 36

equivalent T, 183

for crossing terminals, 40

potentiometer terms, 389-390, 519

tuned, 369

as interstage network, 427-428

with lattice and bridge circuits, 271

Transients, 30, 107, 110

Transimpedance, 6, 7, 48, see Trans-

conductance

Transit time, 1, 457, 481, 485

frequency,

/

p, 485

Transmission, definition, 77

line, 222-223, 298-299

Trap circuit, 290-291, 420-421, 497-

498, 507-509

Tube, see Vacuum tube

Two-terminal impedance of Brune

type, 182-185

interstage, band-pass, 418

gain, 403-406

general theorems on, 403—407

ideal, 411-412

of specified phase margin, 418—

425

simple types of, 425—427

with maximum constant gain,

406, 408^15
variable gain, 415-417

network, see Driving-point im-

pedance

Type J open-wire carrier telephone

system, 499-502

Type of feedback circuits, balanced

bridge, 37-38, 73, 85,

464

cathode, 39-40, 86, 361 , 400

double loop, 56

general, 35-39

hybrid coil, high and low

side, 38, 464, 499

local, 41,95-101

series and shunt, 42

multiple loop, 42, 45

series, 36-37, 39-41, 73, 86,

361, 463, 485-486
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Type of feedback circuits, shunt, 36-

37, 39, 73, 86, 504
single loop, 41, 46-47, 55,

61, 86, 451-487

Unfolded loop, 505
Uniform dissipation, definition, 216

frequency transformation for,

217
Unilateral element, see Vacuum

tube
Unit amplitude, definition, 131

slope, definition, 315
Unsymmetrical minors, 113

roots of, 116

Vacuum tube, 1, 6-7, 13-14, 31-81,

186, 451, 462, 494
amplification, 6
currents and voltages, 6-7

distortion, 79-80

elements, 6

figure-of-merit, 477
grid-plate coupling, 7
impedances, 6-7

linear or non-linear, 43
mutual impedance, 6, 67
parasitic capacities, see Para-

sitic capacity

phase reversal, 7, 48
plate generator, apparent or

equivalent, 6
reference value, 78-79
return difference, 77

transconductance, see Trans-

conductance

transimmittance, 48-49, 56

transimpedance, 6-7

variations in gain, return volt-

age as index of effect

of, 46-47

tubes in tandem, 7, 31-81

optimum number of, 478—
480

to furnish negative resistances,

187

Vacuum tubes working into their own
parasitic capacities,

457-458, 477
Variable cut-off characteristic, mean

and extreme values of,

520-521

required changes in loss and
phase margins of, 519—

520

simulation by circuit with

regulator, 527-529, see

Regulatingbroad-band
amplifier

theoretical, 519-521

loop gain in the useful band, 456
phase margin over cut-off region,

456
Variations in a network character-

istic produced by
changes in a single

element, 223-225

Video amplifier interstage, 326
Voice-frequency band, 43

Voltage, driving, 4-10, 29
complex, exponential or si-

nusoidal, 8-9, 18-23,

29-30

instantaneous, 8

steady-state, 15, 30
equations, branch, 4
equilibrium, 4, 10

equivalent plate generator, 7
generator of zero internal imped-

ance, 188-189

input and output, 31, 34
node, 2-3

of frequency/, 22

source, 1, 10, 13, 190

Volume limiter, 490
performance, 387-392, 399-401,

486

characteristics, definition, 387
compromise between feedback

and, 390, 463
in illustrative design, 392
per repeater link, 392
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Volume performance requirement,

391-392

vs external gain, 396, 399

Wo, see Computation ofWa

WARE, L. A., 151

Wave filter, 1

dissipative, 217

for input and output circuits,

369, 372-378

interstage networks, 417

image impedance, 326

representation by lattices, 234-

235

simple circuits approximating

the impedance of a,

312-315

WEBSTER, A. G., 126

Weighting factor for computing

phase, 313

WENTZ, J. F., 285, 309

WEST, J. M., 392, 489

Wheatstone bridge, inverse net-

work for, 197

unfolded lattice as a, 231, 243

WHEELER, H. A., 408, 428

WHITTAKER, E. T., 126

WIENER, N., 242, 303

Zero gain intercept of asymptote,

460

reactance or phase characteristic,

294

reference for an element, 48—49

Zeros and poles in equalizer design,

249-262

general physical network

characteristics, 105—

106,111,120-123,134,

276-277

Zeros and poles in phase reduction,

365

pure reactances, 215

transfer impedance func-

tions, 230-240

interchange of, 196

location of, on complex p-

plane, 105

ofimpedance and admittance,

24-28

resonant circuit impedance,

26-27

on real frequency axis, 105,

111-113, 171-178

translation of, for parasitic

dissipation, 217—218

for stable networks, 134

in an illustrative circuit, 115—

120

of A on real frequency axis, 111—

113

other determinants, 113-114

ZOBEL, O. J., 197, 206, 239, 249,

265, 326, 373

a. and /3 loops in a feedback circuit,

158

j8 circuit, 35, 44-45, 56, 385

equalization, 283, 391

loss, 457, 462, 477, 486, 511

ix and /3 circuits, 31—40

circuit, see Forward circuit

also Interstage network de-

sign

«3, 32-33, 47

characteristic, 32-33, 512-513, see

Loop cut-off charac-

teristic

effect or error, 33

loop, 32-42
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